Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Build Environ ; 229: 109920, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36569517

RESUMO

Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 µm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations.

2.
Indoor Air ; 32(2): e12987, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35225389

RESUMO

To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3-3 µm coughed and exhaled aerosol particles by >77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, that is, coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a layered mitigation strategy approach of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Máscaras , Distanciamento Físico , Ventilação , Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/prevenção & controle , Humanos , Aerossóis e Gotículas Respiratórios , SARS-CoV-2
3.
MMWR Morb Mortal Wkly Rep ; 70(7): 254-257, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33600386

RESUMO

Universal masking is one of the prevention strategies recommended by CDC to slow the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). As of February 1, 2021, 38 states and the District of Columbia had universal masking mandates. Mask wearing has also been mandated by executive order for federal property* as well as on domestic and international transportation conveyances.† Masks substantially reduce exhaled respiratory droplets and aerosols from infected wearers and reduce exposure of uninfected wearers to these particles. Cloth masks§ and medical procedure masks¶ fit more loosely than do respirators (e.g., N95 facepieces). The effectiveness of cloth and medical procedure masks can be improved by ensuring that they are well fitted to the contours of the face to prevent leakage of air around the masks' edges. During January 2021, CDC conducted experimental simulations using pliable elastomeric source and receiver headforms to assess the extent to which two modifications to medical procedure masks, 1) wearing a cloth mask over a medical procedure mask (double masking) and 2) knotting the ear loops of a medical procedure mask where they attach to the mask's edges and then tucking in and flattening the extra material close to the face (knotted and tucked masks), could improve the fit of these masks and reduce the receiver's exposure to an aerosol of simulated respiratory droplet particles of the size considered most important for transmitting SARS-CoV-2. The receiver's exposure was maximally reduced (>95%) when the source and receiver were fitted with modified medical procedure masks. These laboratory-based experiments highlight the importance of good fit to optimize mask performance. Until vaccine-induced population immunity is achieved, universal masking is a highly effective means to slow the spread of SARS-CoV-2** when combined with other protective measures, such as physical distancing, avoiding crowds and poorly ventilated indoor spaces, and good hand hygiene. Innovative efforts to improve the fit of cloth and medical procedure masks to enhance their performance merit attention.


Assuntos
COVID-19/prevenção & controle , Máscaras/normas , COVID-19/epidemiologia , COVID-19/transmissão , Centers for Disease Control and Prevention, U.S. , Humanos , Máscaras/estatística & dados numéricos , Estados Unidos/epidemiologia
4.
MMWR Morb Mortal Wkly Rep ; 70(27): 972-976, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237047

RESUMO

SARS-CoV-2, the virus that causes COVID-19, can be spread by exposure to droplets and aerosols of respiratory fluids that are released by infected persons when they cough, sing, talk, or exhale. To reduce indoor transmission of SARS-CoV-2 between persons, CDC recommends measures including physical distancing, universal masking (the use of face masks in public places by everyone who is not fully vaccinated), and increased room ventilation (1). Ventilation systems can be supplemented with portable high efficiency particulate air (HEPA) cleaners* to reduce the number of infectious particles in the air and provide enhanced protection from transmission between persons (2); two recent reports found that HEPA air cleaners in classrooms could reduce overall aerosol particle concentrations by ≥80% within 30 minutes (3,4). To investigate the effectiveness of portable HEPA air cleaners and universal masking at reducing exposure to exhaled aerosol particles, the investigation team used respiratory simulators to mimic a person with COVID-19 and other, uninfected persons in a conference room. The addition of two HEPA air cleaners that met the Environmental Protection Agency (EPA)-recommended clean air delivery rate (CADR) (5) reduced overall exposure to simulated exhaled aerosol particles by up to 65% without universal masking. Without the HEPA air cleaners, universal masking reduced the combined mean aerosol concentration by 72%. The combination of the two HEPA air cleaners and universal masking reduced overall exposure by up to 90%. The HEPA air cleaners were most effective when they were close to the aerosol source. These findings suggest that portable HEPA air cleaners can reduce exposure to SARS-CoV-2 aerosols in indoor environments, with greater reductions in exposure occurring when used in combination with universal masking.


Assuntos
Ar Condicionado/instrumentação , Filtros de Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Máscaras , SARS-CoV-2 , Aerossóis , Desenho de Equipamento , Humanos , Estados Unidos
5.
J Occup Environ Hyg ; 18(8): 409-422, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34161193

RESUMO

Face masks reduce the expulsion of respiratory aerosols produced during coughs and exhalations ("source control"). Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how the combined effects of masking, orientation, and distance affect the exposure of individuals to respiratory aerosols in indoor spaces. We placed a respiratory aerosol simulator ("source") and a breathing simulator ("recipient") in a 3 m × 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-min mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient.


Assuntos
Tosse , Expiração , Aerossóis , Tosse/prevenção & controle , Humanos , Máscaras , Respiração
6.
J Occup Environ Hyg ; 16(12): 804-816, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638865

RESUMO

The protection of emergency medical service (EMS) workers from airborne disease transmission is important during routine transport of patients with infectious respiratory illnesses and would be critical during a pandemic of a disease such as influenza. However, few studies have examined the effectiveness of ambulance ventilation systems at reducing EMS worker exposure to airborne particles (aerosols). In our study, a cough aerosol simulator mimicking a coughing patient with an infectious respiratory illness was placed on a patient cot in an ambulance. The concentration and dispersion of cough aerosol particles were measured for 15 min at locations corresponding to likely positions of an EMS worker treating the patient. Experiments were performed with the patient cot at an angle of 0° (horizontal), 30°, and 60°, and with the ambulance ventilation system set to 0, 5, and 12 air changes/hour (ACH). Our results showed that increasing the air change rate significantly reduced the airborne particle concentration (p < 0.001). Increasing the air change rate from 0 to 5 ACH reduced the mean aerosol concentration by 34% (SD = 19%) overall, while increasing it from 0 to 12 ACH reduced the concentration by 68% (SD = 9%). Changing the cot angle also affected the concentration (p < 0.001), but the effect was more modest, especially at 5 and 12 ACH. Contrary to our expectations, the aerosol concentrations at the different worker positions were not significantly different (p < 0.556). Flow visualization experiments showed that the ventilation system created a recirculation pattern which helped disperse the aerosol particles throughout the compartment, reducing the effectiveness of the system. Our findings indicate that the ambulance ventilation system reduced but did not eliminate worker exposure to infectious aerosol particles. Aerosol exposures were not significantly different at different locations within the compartment, including locations behind and beside the patient. Improved ventilation system designs with smoother and more unidirectional airflows could provide better worker protection.


Assuntos
Aerossóis/análise , Ambulâncias , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Exposição Ocupacional/prevenção & controle , Ventilação/métodos , Ar Condicionado/métodos , Tosse , Serviços Médicos de Emergência , Humanos , Infecções Respiratórias/transmissão
7.
J Occup Environ Hyg ; 15(9): 664-675, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30081757

RESUMO

Increased understanding of influenza transmission is critical for pandemic planning and selecting appropriate controls for healthcare personnel safety and health. The goals of this pilot study were to assess environmental contamination in different areas and at two time periods in the influenza season and to determine the feasibility of using surgical mask contamination to evaluate potential exposure to influenza virus. Bioaerosol samples were collected over 12 days (two 6-day sessions) at 12 locations within a student health center using portable two-stage bioaerosol samplers operating 8 hr each day. Surface samples were collected each morning and afternoon from common high-contact non-porous hard surfaces from rooms and locations where bioaerosol samplers were located. Surgical masks worn by participants while in contact with patients with influenza-like illness were collected. A questionnaire administered to each of the 12 participants at the end of each workday and another at the end of each workweek assessed influenza-like illness symptoms, estimated the number of influenza-like illness patient contacts, hand hygiene, and surgical mask usage. All samples were analyzed using qPCR. Over the 12 days of the study, three of the 127 (2.4%) bioaerosol samples, 2 of 483 (0.41%) surface samples, and 0 of 54 surgical masks were positive for influenza virus. For the duration of contact that occurred with an influenza patient on any of the 12 days, nurse practitioners and physicians reported contacts with influenza-like illness patients >60 min, medical assistants reported 15-44 min, and administrative staff reported <30 min. Given the limited number of bioaerosol and surface samples positive for influenza virus in the bioaerosol and surface samples, the absence of influenza virus on the surgical masks provides inconclusive evidence for the potential to use surgical masks to assess exposure to influenza viruses. Further studies are needed to determine feasibility of this approach in assessing healthcare personnel exposures. Information learned in this study can inform future field studies on influenza transmission.


Assuntos
Pessoal de Saúde , Influenza Humana/transmissão , Máscaras/virologia , Aerossóis , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Maryland/epidemiologia , Exposição Ocupacional , Orthomyxoviridae/genética , Orthomyxoviridae/isolamento & purificação , Projetos Piloto , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Estudantes , Inquéritos e Questionários , Local de Trabalho
8.
J Occup Environ Hyg ; 12(2): 107-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25523206

RESUMO

Patients with influenza release aerosol particles containing the virus into their environment. However, the importance of airborne transmission in the spread of influenza is unclear, in part because of a lack of information about the infectivity of the airborne virus. The purpose of this study was to determine the amount of viable influenza A virus that was expelled by patients in aerosol particles while coughing. Sixty-four symptomatic adult volunteer outpatients were asked to cough 6 times into a cough aerosol collection system. Seventeen of these participants tested positive for influenza A virus by viral plaque assay (VPA) with confirmation by viral replication assay (VRA). Viable influenza A virus was detected in the cough aerosol particles from 7 of these 17 test subjects (41%). Viable influenza A virus was found in the smallest particle size fraction (0.3 µm to 8 µm), with a mean of 142 plaque-forming units (SD 215) expelled during the 6 coughs in particles of this size. These results suggest that a significant proportion of patients with influenza A release small airborne particles containing viable virus into the environment. Although the amounts of influenza A detected in cough aerosol particles during our experiments were relatively low, larger quantities could be expelled by influenza patients during a pandemic when illnesses would be more severe. Our findings support the idea that airborne infectious particles could play an important role in the spread of influenza.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Tosse/virologia , Vírus da Influenza A/isolamento & purificação , Influenza Humana/transmissão , Adolescente , Adulto , Feminino , Humanos , Masculino , Tamanho da Partícula , RNA Viral/análise , RNA Viral/isolamento & purificação , Ensaio de Placa Viral , Replicação Viral
9.
Risk Anal ; 34(8): 1423-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24593662

RESUMO

Facemasks are part of the hierarchy of interventions used to reduce the transmission of respiratory pathogens by providing a barrier. Two types of facemasks used by healthcare workers are N95 filtering facepiece respirators (FFRs) and surgical masks (SMs). These can become contaminated with respiratory pathogens during use, thus serving as potential sources for transmission. However, because of the lack of field studies, the hazard associated with pathogen-exposed facemasks is unknown. A mathematical model was used to calculate the potential influenza contamination of facemasks from aerosol sources in various exposure scenarios. The aerosol model was validated with data from previous laboratory studies using facemasks mounted on headforms in a simulated healthcare room. The model was then used to estimate facemask contamination levels in three scenarios generated with input parameters from the literature. A second model estimated facemask contamination from a cough. It was determined that contamination levels from a single cough (≈19 viruses) were much less than likely levels from aerosols (4,473 viruses on FFRs and 3,476 viruses on SMs). For aerosol contamination, a range of input values from the literature resulted in wide variation in estimated facemask contamination levels (13-202,549 viruses), depending on the values selected. Overall, these models and estimates for facemask contamination levels can be used to inform infection control practice and research related to the development of better facemasks, to characterize airborne contamination levels, and to assist in assessment of risk from reaerosolization and fomite transfer because of handling and reuse of contaminated facemasks.


Assuntos
Controle de Infecções/instrumentação , Influenza Humana/prevenção & controle , Máscaras/virologia , Aerossóis , Tosse/virologia , Pessoal de Saúde , Humanos , Controle de Infecções/estatística & dados numéricos , Influenza Humana/transmissão , Máscaras/efeitos adversos , Modelos Biológicos , Dispositivos de Proteção Respiratória/efeitos adversos , Dispositivos de Proteção Respiratória/virologia , Medição de Risco
10.
J Occup Environ Hyg ; 11(8): 509-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24467190

RESUMO

Health care workers are exposed to potentially infectious airborne particles while providing routine care to coughing patients. However, much is not understood about the behavior of these aerosols and the risks they pose. We used a coughing patient simulator and a breathing worker simulator to investigate the exposure of health care workers to cough aerosol droplets, and to examine the efficacy of face shields in reducing this exposure. Our results showed that 0.9% of the initial burst of aerosol from a cough can be inhaled by a worker 46 cm (18 inches) from the patient. During testing of an influenza-laden cough aerosol with a volume median diameter (VMD) of 8.5 µm, wearing a face shield reduced the inhalational exposure of the worker by 96% in the period immediately after a cough. The face shield also reduced the surface contamination of a respirator by 97%. When a smaller cough aerosol was used (VMD = 3.4 µm), the face shield was less effective, blocking only 68% of the cough and 76% of the surface contamination. In the period from 1 to 30 minutes after a cough, during which the aerosol had dispersed throughout the room and larger particles had settled, the face shield reduced aerosol inhalation by only 23%. Increasing the distance between the patient and worker to 183 cm (72 inches) reduced the exposure to influenza that occurred immediately after a cough by 92%. Our results show that health care workers can inhale infectious airborne particles while treating a coughing patient. Face shields can substantially reduce the short-term exposure of health care workers to large infectious aerosol particles, but smaller particles can remain airborne longer and flow around the face shield more easily to be inhaled. Thus, face shields provide a useful adjunct to respiratory protection for workers caring for patients with respiratory infections. However, they cannot be used as a substitute for respiratory protection when it is needed. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables of the experiments performed, more detailed information about the aerosol measurement methods, photographs of the experimental setup, and summaries of the experimental data from the aerosol measurement devices, the qPCR analysis, and the VPA.].


Assuntos
Aerossóis/análise , Tosse , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Vírus da Influenza A Subtipo H1N1 , Exposição por Inalação/prevenção & controle , Máscaras , Humanos , Manequins , Tamanho da Partícula
11.
Aerosol Sci Technol ; 57(3): 215-232, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37206373

RESUMO

SARS-CoV-2 spreads by infectious aerosols and droplets from the respiratory tract. Masks and respirators can reduce the transmission of infectious respiratory diseases by collecting these aerosols at the source. The ability of source control devices to block aerosols can be tested by expelling an aerosol through a headform using constant airflows, which are simpler, or cyclic airflows, which are more realistic but require more complex methods. Experiments with respirators found that using cyclic vs. constant flows affected the amount of aerosol inhaled, but similar comparisons have not been made for source control devices with exhaled aerosols. We measured the collection efficiencies for exhaled aerosols for two cloth masks, two medical masks with and without an elastic mask brace, a neck gaiter, and an N95 filtering facepiece respirator using 15 L/min and 85 L/min constant and cyclic flows and a headform with pliable skin. The collection efficiencies for the 15 L/min cyclic flow, 15 L/min constant flow, and 85 L/min constant flow were not significantly different in most cases. The apparent collection efficiencies for the 85 L/min cyclic flow were artificially increased by rebreathing and refiltration of the aerosol from the collection chamber. The collection efficiencies correlated well with the fit factors (ρ > 0.95) but not the filtration efficiencies (ρ < 0.54). Our results suggest that the aerosol collection efficiency measurements of source control devices are comparable when testing the devices using either constant or cyclic airflows and that the potential for aerosol rebreathing must be considered when conducting experiments.

12.
Clin Infect Dis ; 54(11): 1569-77, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22460981

RESUMO

BACKGROUND: The potential for aerosol transmission of infectious influenza virus (ie, in healthcare facilities) is controversial. We constructed a simulated patient examination room that contained coughing and breathing manikins to determine whether coughed influenza was infectious and assessed the effectiveness of an N95 respirator and surgical mask in blocking transmission. METHODS: National Institute for Occupational Safety and Health aerosol samplers collected size-fractionated aerosols for 60 minutes at the mouth of the breathing manikin, beside the mouth, and at 3 other locations in the room. Total recovered virus was quantitated by quantitative polymerase chain reaction and infectivity was determined by the viral plaque assay and an enhanced infectivity assay. RESULTS: Infectious influenza was recovered in all aerosol fractions (5.0% in >4 µm aerodynamic diameter, 75.5% in 1-4 µm, and 19.5% in <1 µm; n = 5). Tightly sealing a mask to the face blocked entry of 94.5% of total virus and 94.8% of infectious virus (n = 3). A tightly sealed respirator blocked 99.8% of total virus and 99.6% of infectious virus (n = 3). A poorly fitted respirator blocked 64.5% of total virus and 66.5% of infectious virus (n = 3). A mask documented to be loosely fitting by a PortaCount fit tester, to simulate how masks are worn by healthcare workers, blocked entry of 68.5% of total virus and 56.6% of infectious virus (n = 2). CONCLUSIONS: These results support a role for aerosol transmission and represent the first reported laboratory study of the efficacy of masks and respirators in blocking inhalation of influenza in aerosols. The results indicate that a poorly fitted respirator performs no better than a loosely fitting mask.


Assuntos
Aerossóis , Microbiologia do Ar , Tosse , Influenza Humana/transmissão , Influenza Humana/virologia , Orthomyxoviridae/isolamento & purificação , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Influenza Humana/patologia , Máscaras/virologia , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral , Ensaio de Placa Viral
13.
J Occup Environ Hyg ; 9(7): 443-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22651099

RESUMO

The question of whether influenza is transmitted to a significant degree by aerosols remains controversial, in part, because little is known about the quantity and size of potentially infectious airborne particles produced by people with influenza. In this study, the size and amount of aerosol particles produced by nine subjects during coughing were measured while they had influenza and after they had recovered, using a laser aerosol particle spectrometer with a size range of 0.35 to 10 µm. Individuals with influenza produce a significantly greater volume of aerosol when ill compared with afterward (p = 0.0143). When the patients had influenza, their average cough aerosol volume was 38.3 picoliters (pL) of particles per cough (SD 43.7); after patients recovered, the average volume was 26.4 pL per cough (SD 45.6). The number of particles produced per cough was also higher when subjects had influenza (average 75,400 particles/cough, SD 97,300) compared with afterward (average 52,200, SD 98,600), although the difference did not reach statistical significance (p = 0.1042). The average number of particles expelled per cough varied widely from patient to patient, ranging from 900 to 302,200 particles/cough while subjects had influenza and 1100 to 308,600 particles/cough after recovery. When the subjects had influenza, an average of 63% of each subject's cough aerosol particle volume in the detection range was in the respirable size fraction (SD 22%), indicating that these particles could reach the alveolar region of the lungs if inhaled by another person. This enhancement in aerosol generation during illness may play an important role in influenza transmission and suggests that a better understanding of this phenomenon is needed to predict the production and dissemination of influenza-laden aerosols by people infected with this virus. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resources: a PDF file of demographic information, influenza test results, and volume and peak flow rate during each cough and a PDF file containing number and size of aerosol particles produced.].


Assuntos
Aerossóis/análise , Tosse , Influenza Humana/transmissão , Tamanho da Partícula , Adolescente , Adulto , Aerossóis/química , Estudos de Casos e Controles , Tosse/virologia , Feminino , Humanos , Influenza Humana/complicações , Masculino , Análise Espectral , Espirometria , Adulto Jovem
14.
Toxicol Mech Methods ; 22(3): 211-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22112187

RESUMO

The Luminex xTAG(®) respiratory viral panel (RVP) kit simultaneously detects and identifies multiple respiratory viruses including several subtypes of influenza A using a multiplex nucleic acid amplification test assay platform. The emitted fluorescence signal from the RVP assay provides qualitative information on the presence of a particular viral species in respiratory specimens. However, a quantitative assessment is preferred when monitoring environmental samples for respiratory viruses. In this study, we explored the potential use of the RVP kit as a semi-quantitative screening assay for influenza virus detection. The concentration- response of the RVP assay was modeled using four-parameter logistic (4-PL) fits of mean fluorescence intensity (MFI) versus dilute ranges of the influenza A matrix gene, seasonal influenza vaccine, and 2009 H1N1 influenza vaccine. The goodness of fit of the 4-PL model was evaluated by comparing the copy number determined with the fitted model (observed copy number) with the copy number calculated from the dilution of the matrix DNA or vaccine (expected copy number). For the matrix DNA and 2009 H1N1 vaccine, the 4-PL model provided good fit for the influenza A RVP assay response over factors of 10(3) to 10(4). For seasonal influenza vaccine, the model provided good fit for RVP assay response to influenza A, influenza B, H1, and H3.


Assuntos
Vírus da Influenza A/genética , Influenza Humana/diagnóstico , Reação em Cadeia da Polimerase Multiplex , RNA Viral/análise , Kit de Reagentes para Diagnóstico , Fluorescência , Dosagem de Genes , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/imunologia , Vírus da Influenza B/genética , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Modelos Lineares , Modelos Logísticos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
15.
Am J Infect Control ; 50(2): 133-140, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34924208

RESUMO

BACKGROUND: During the COVID-19 pandemic, face masks are used as source control devices to reduce the expulsion of respiratory aerosols from infected people. Modifications such as mask braces, earloop straps, knotting and tucking, and double masking have been proposed to improve mask fit however the data on source control are limited. METHODS: The effectiveness of mask fit modifications was determined by conducting fit tests on human subjects and simulator manikins and by performing simulated coughs and exhalations using a source control measurement system. RESULTS: Medical masks without modification blocked ≥56% of cough aerosols and ≥42% of exhaled aerosols. Modifying fit by crossing the earloops or placing a bracket under the mask did not increase performance, while using earloop toggles, an earloop strap, and knotting and tucking the mask increased performance. The most effective modifications for improving source control performance were double masking and using a mask brace. Placing a cloth mask over a medical mask blocked ≥85% of cough aerosols and ≥91% of exhaled aerosols. Placing a brace over a medical mask blocked ≥95% of cough aerosols and ≥99% of exhaled aerosols. CONCLUSIONS: Fit modifications can greatly improve the performance of face masks as source control devices for respiratory aerosols.


Assuntos
COVID-19 , Máscaras , Aerossóis , Humanos , Pandemias , SARS-CoV-2
16.
Toxicol Appl Pharmacol ; 252(3): 268-72, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21376747

RESUMO

The murine local lymph node assay (LLNA) is a validated, well accepted method for identification of chemical contact allergens. Both direct acting haptens and prohaptens (requiring metabolic activation) can be identified, but not differentiated by this assay. This study was used to assess the utility of a pan microsomal metabolic deficient mouse to distinguish between direct acting haptens and prohaptens in the LLNA. Hapten and prohapten induced cell proliferation was compared in C57BL/6J (B6) wild type (WT) versus homozygous (HO) knockout mice with a hypomorphic NADPH-Cytochrome P450 Reductase (CPR) gene (termed Cpr(low/low)) resulting in low CPR enzyme activity. Mice were dosed with known prohaptens; benzo(a)pyrene (BaP), carvone oxime (COx) and paracetamol (PCM) and haptens; oxazolone (OX), 4-ethoxymethylene-2-phenyl-2-oxazolin-5-one (EtOX), and N-acetylbenzoquinoneimine (NABQI) in this study. Skin microsomes from the WT, HO and heterozygous (HT) Cpr(low/low) mice were compared and evaluated for CPR activity. Lymphocyte proliferative responses to BaP, COx and PCM were significantly abrogated by 36.4%, 45.2% and 50.8%, respectively; in Cpr(low/low) knock out (KO) mice versus WT mice; while the lymphocyte proliferative responses to the direct acting haptens OX, EtOX and NABQI were comparable. CPR activity, determined as Units/mg protein, was determined to be significantly lower in the Cpr(low/low) mice compared to the WT. Results of the present study suggest potential utility of the Cpr(low/low) mice in the LLNA to differentiate prohaptens from direct acting haptens.


Assuntos
Alérgenos/farmacologia , Haptenos/farmacologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pele/efeitos dos fármacos , Alérgenos/metabolismo , Animais , Feminino , Haptenos/metabolismo , Técnicas In Vitro , Ensaio Local de Linfonodo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH-Ferri-Hemoproteína Redutase/deficiência , NADPH-Ferri-Hemoproteína Redutase/genética , Pele/metabolismo
17.
Mycopathologia ; 171(1): 23-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20632211

RESUMO

Fungal hemolysins are potential virulence factors. Some fungal hemolysins belong to the aegerolysin protein family that includes cytolysins capable of lysing erythrocytes and other cells. Here, we describe a hemolysin from Aspergillus terreus called terrelysin. We used the genome sequence database to identify the terrelysin sequence based on homology with other known aegerolysins. Aspergillus terreus mRNA was isolated, transcribed to cDNA and the open reading frame for terrelysin amplified by PCR using specific primers. Using the pASK-IBA6 cloning vector, we produced recombinant terrelysin (rTerrelysin) as a fusion product in Escherichia coli. The recombinant protein was purified and using MALDI-TOF MS determined to have a mass of 16,428 Da. Circular dichroism analysis suggests the secondary structure of the protein to be predominantly ß-sheet. Results from thermal denaturation of rTerrelysin show that the protein maintained the ß-sheet confirmation up to 65°C. Polyclonal antibody to rTerrelysin recognized a protein of approximately 16.5 kDa in mycelial extracts from A. terreus.


Assuntos
Aspergillus/patogenicidade , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/isolamento & purificação , Micotoxinas/genética , Micotoxinas/isolamento & purificação , Sequência de Aminoácidos , Dicroísmo Circular , Clonagem Molecular , Biologia Computacional , DNA Complementar/genética , DNA Fúngico/genética , Escherichia coli/genética , Vetores Genéticos , Proteínas Hemolisinas/química , Temperatura Alta , Dados de Sequência Molecular , Peso Molecular , Micotoxinas/química , Reação em Cadeia da Polimerase , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Aerosol Sci Technol ; 55(4): 449-457, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35924077

RESUMO

Face masks are recommended to reduce community transmission of SARS-CoV-2. One of the primary benefits of face masks and other coverings is as source control devices to reduce the expulsion of respiratory aerosols during coughing, breathing, and speaking. Face shields and neck gaiters have been proposed as an alternative to face masks, but information about face shields and neck gaiters as source control devices is limited. We used a cough aerosol simulator with a pliable skin headform to propel small aerosol particles (0 to 7 µm) into different face coverings. An N95 respirator blocked 99% (standard deviation (SD) 0.3%) of the cough aerosol, a medical grade procedure mask blocked 59% (SD 6.9%), a 3-ply cotton cloth face mask blocked 51% (SD 7.7%), and a polyester neck gaiter blocked 47% (SD 7.5%) as a single layer and 60% (SD 7.2%) when folded into a double layer. In contrast, the face shield blocked 2% (SD 15.3%) of the cough aerosol. Our results suggest that face masks and neck gaiters are preferable to face shields as source control devices for cough aerosols.

19.
Aerosol Sci Technol ; 55(10): 1125-1142, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35923216

RESUMO

Universal mask wearing is recommended to help control the spread of COVID-19. Masks reduce the expulsion of aerosols of respiratory fluids into the environment (called source control) and offer some protection to the wearer. Masks are often characterized using filtration efficiency, airflow resistance, and manikin or human fit factors, which are standard metrics used for personal protective devices. However, none of these metrics are direct measurements of how effectively a mask blocks coughed and exhaled aerosols. We studied the source control performance of 15 cloth masks (face masks, neck gaiters, and bandanas), two medical masks, and two N95 filtering facepiece respirators by measuring their ability to block aerosols ≤ 7 µm expelled during simulated coughing and exhalation (called source control collection efficiency). These measurements were compared with filtration efficiencies, airflow resistances, and fit factors measured on manikin headforms and humans. Collection efficiencies for the cloth masks ranged from 17% to 71% for coughing and 35% to 66% for exhalation. Filtration efficiencies for the cloth masks ranged from 1.4% to 98%, while the fit factors were 1.3 to 7.4 on headforms and 1.0 to 4.0 on human subjects. The Spearman's rank correlation coefficients between the source control collection efficiencies and the standard metrics ranged from 0.03 to 0.68 and were significant in all but two cases. However, none of the standard metrics were strongly correlated with source control performance. A better understanding of the relationships between source control collection efficiency, filtration efficiency, airflow resistance, and fit factor is needed.

20.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960804

RESUMO

There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Exposição por Inalação/prevenção & controle , Máscaras , Distanciamento Físico , Aerossóis e Gotículas Respiratórios/virologia , Ventilação , Ar Condicionado , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA