Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31964750

RESUMO

Human genital Chlamydia infection is a major public health concern due to the serious reproductive system complications. Chlamydia binds several receptor tyrosine kinases (RTKs) on host cells, including the epidermal growth factor receptor (EGFR), and activates cellular signaling cascades for host invasion, cytoskeletal remodeling, optimal inclusion development, and induction of pathogenic epithelial-mesenchyme transition (EMT). Chlamydia also upregulates transforming growth factor beta (TGF-ß) expression, whose signaling pathway synergizes with the EGFR cascade, but its role in infectivity, inclusions, and EMT induction is unknown. We hypothesized that the EGFR and TGF-ß signaling pathways cooperate during chlamydial infection for optimal inclusion development and stable EMT induction. The results revealed that Chlamydia upregulated TGF-ß expression as early as 6 h postinfection of epithelial cells and stimulated both the EGFR and TGF-ß signaling pathways. Inhibition of either the EGFR or TGF-ßR1 signaling substantially reduced inclusion development; however, the combined inhibition of both EGFR and TGF-ßR1 signaling reduced inclusions by over 90% and prevented EMT induction. Importantly, EGFR inhibition suppressed TGF-ß expression, and an inhibitory thrombospondin-1 (Tsp1)-based peptide inhibited chlamydia-induced EMT, revealing a major source of active TGF-ß during infection. Finally, TGF-ßR signaling inhibition suppressed the expression of transforming acidic coiled-coil protein-3 (TACC3), which stabilizes EGFR signaling, suggesting reciprocal regulation between TGF-ß and EGFR signaling during chlamydial infection. Thus, RTK-mediated host invasion by chlamydia upregulated TGF-ß expression and signaling, which cooperated with other cellular signaling cascades and cytoskeletal remodeling to support optimal inclusion development and EMT induction. This finding may provide new targets for chlamydial disease biomarkers and prevention.


Assuntos
Infecções por Chlamydia/fisiopatologia , Chlamydia/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Receptores ErbB/metabolismo , Interações Hospedeiro-Patógeno , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Endocitose , Transição Epitelial-Mesenquimal , Corpos de Inclusão/microbiologia , Camundongos , Modelos Biológicos
2.
BMC Genomics ; 20(1): 143, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777008

RESUMO

BACKGROUND: Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology. MicroRNAs regulate several pathophysiological processes of infectious and non-infectious etiologies. In this study, we tested the hypothesis that the miRNA profile of single and repeat genital chlamydial infections will be different and that these differences will be time dependent. Thus, we analyzed and compared differentially expressed mice genital tract miRNAs after single and repeat chlamydia infections using a C. muridarum mouse model. Mice were sacrificed and their genital tract tissues were collected at 1, 2, 4, and 8 weeks after a single and repeat chlamydia infections. Histopathology, and miRNA sequencing were performed. RESULTS: Histopathology presentation showed that the oviduct and uterus of reinfected mice were more inflamed, distended and dilated compared to mice infected once. The miRNAs expression profile was different in the reproductive tissues after a reinfection, with a greater number of miRNAs expressed after reinfection. Also, the number of miRNAs expressed each week after chlamydia infection and reinfection varied, with weeks eight and one having the highest number of differentially expressed miRNAs for chlamydia infection and reinfection respectively. Ten miRNAs; mmu-miR-378b, mmu-miR-204-5p, mmu-miR-151-5p, mmu-miR-142-3p, mmu-miR-128-3p, mmu-miR-335-3p, mmu-miR-195a-3p, mmu-miR-142-5p, mmu-miR-106a-5p and mmu-miR-92a-3p were common in both primary chlamydia infection and reinfection. Pathway analysis showed that, amongst other functions, the differentially regulated miRNAs control pathways involved in cellular and tissue development, disease conditions and toxicity. CONCLUSIONS: This study provides insights into the changes in miRNA expression over time after chlamydia infection and reinfection, as well as the pathways they regulate to determine pathological outcomes. The miRNAs networks generated in our study shows that there are differences in the focus molecules involved in significant biological functions in chlamydia infection and reinfection, implying that chlamydial pathogenesis occurs differently for each type of infection and that this could be important when determining treatments regime and disease outcome. The study underscores the crucial role of host factors in chlamydia pathogenesis.


Assuntos
Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Chlamydia , Genitália/microbiologia , MicroRNAs/genética , Transcriptoma , Animais , Biópsia , Linhagem Celular , Infecções por Chlamydia/patologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genitália/patologia , Humanos , Imuno-Histoquímica , Camundongos
3.
Biochem Biophys Res Commun ; 508(2): 421-429, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30503337

RESUMO

The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.


Assuntos
Chlamydia muridarum/patogenicidade , Chlamydia trachomatis/patogenicidade , Interações entre Hospedeiro e Microrganismos/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Infecções por Chlamydia/etiologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydia muridarum/metabolismo , Chlamydia trachomatis/metabolismo , Células HeLa , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Miosina Tipo II/metabolismo , Sistemas de Secreção Tipo III/metabolismo
4.
Malar J ; 18(1): 319, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533729

RESUMO

BACKGROUND: Plasmodium falciparum, the deadliest causative agent of malaria, has high prevalence in Nigeria. Drug resistance causing failure of previously effective drugs has compromised anti-malarial treatment. On this basis, there is need for a proactive surveillance for resistance markers to the currently recommended artemisinin-based combination therapy (ACT), for early detection of resistance before it become widespread. METHODS: This study assessed anti-malarial resistance genes polymorphism in patients with uncomplicated P. falciparum malaria in Lagos, Nigeria. Sanger and Next Generation Sequencing (NGS) methods were used to screen for mutations in thirty-seven malaria positive blood samples targeting the P. falciparum chloroquine-resistance transporter (Pfcrt), P. falciparum multidrug-resistance 1 (Pfmdr1), and P. falciparum kelch 13 (Pfk13) genes, which have been previously associated with anti-malarial resistance. RESULTS: Expectedly, the NGS method was more proficient, detecting six Pfmdr1, seven Pfcrt and three Pfk13 mutations in the studied clinical isolates from Nigeria, a malaria endemic area. These mutations included rare Pfmdr1 mutations, N504K, N649D, F938Y and S967N, which were previously unreported. In addition, there was moderate prevalence of the K76T mutation (34.6%) associated with chloroquine and amodiaquine resistance, and high prevalence of the N86 wild type allele (92.3%) associated with lumefantrine resistance. CONCLUSION: Widespread circulation of mutations associated with resistance to current anti-malarial drugs could potentially limit effective malaria therapy in endemic populations.


Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nigéria/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Prevalência , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
5.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084894

RESUMO

The reproductive system complications of genital chlamydial infection include fallopian tube fibrosis and tubal factor infertility. However, the molecular pathogenesis of these complications remains poorly understood. The induction of pathogenic epithelial-mesenchymal transition (EMT) through microRNA (miRNA) dysregulation was recently proposed as the pathogenic basis of chlamydial complications. Focusing on fibrogenesis, we investigated the hypothesis that chlamydia-induced fibrosis is caused by EMT-driven generation of myofibroblasts, the effector cells of fibrosis that produce excessive extracellular matrix (ECM) proteins. The results revealed that the targets of a major category of altered miRNAs during chlamydial infection are key components of the pathophysiological process of fibrogenesis; these target molecules include collagen types I, III, and IV, transforming growth factor ß (TGF-ß), TGF-ß receptor 1 (TGF-ßR1), connective tissue growth factor (CTGF), E-cadherin, SRY-box 7 (SOX7), and NFAT (nuclear factor of activated T cells) kinase dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1a (Dyrk1a). Chlamydial induction of EMT resulted in the generation of α-smooth muscle actin (α-SMA)-positive myofibroblasts that produced ECM proteins, including collagen types I and III and fibronectin. Furthermore, the inhibition of EMT prevented the generation of myofibroblasts and production of ECM proteins during chlamydial infection. These findings may provide useful avenues for targeting EMT or specific components of the EMT pathways as a therapeutic intervention strategy to prevent chlamydia-related complications.


Assuntos
Infecções por Chlamydia/complicações , Infecções por Chlamydia/patologia , Chlamydia/patogenicidade , Transição Epitelial-Mesenquimal/fisiologia , Fibrose/etiologia , Fibrose/patologia , Actinas/metabolismo , Animais , Caderinas/metabolismo , Linhagem Celular , Infecções por Chlamydia/microbiologia , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Fibrose/microbiologia , Camundongos , MicroRNAs/metabolismo , Miofibroblastos/microbiologia , Miofibroblastos/patologia , Fatores de Transcrição NFATC/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fatores de Transcrição SOXF/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
Int J Med Sci ; 15(13): 1449-1457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443164

RESUMO

The artemisinin-based combined therapy (ACT) post-treatment illness in Plasmodium falciparum-endemic areas is characterized by vague malaria-like symptoms. The roles of treatment modality, persistence of parasites and host proinflammatory response in disease course are unknown. We investigated the hypothesis that ACT post-treatment syndrome is driven by parasite genetic polymorphisms and proinflammatory response to persisting mutant parasites. Patients were categorized as treated, untreated and malaria-negative. Malaria positive samples were analyzed for Pfcrt, Pfmdr1, K13 kelch gene polymorphisms, while all samples were evaluated for cytokines (TNF-α, IL-12p70, IL-10, TGF-ß, IFN-γ) and corticosteroids (cortisol and dexamethasone) levels. The treated patients exhibited higher levels of parasitemia, TNF-α, and cortisol, increased incidence of parasite genetic mutations, and greater number of mutant alleles per patient. In addition, corticosteroid levels declined with increasing number of mutant alleles. TGF-ß levels were negatively correlated with parasitemia, while IL-10 and TGF-ß were negatively correlated with increasing number of mutant alleles. However, IL-12 displayed slight positive correlation and TNF-α exhibited moderate positive correlation with increasing number of mutant alleles. Since post-treatment management ultimately results in patient recovery, the high parasite gene polymorphism may act in concert with induced cortisol and TNF-α to account for ACT post-treatment syndrome.


Assuntos
Artemisininas/farmacologia , Plasmodium falciparum/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Corticosteroides/metabolismo , Humanos , Hidrocortisona/metabolismo , Malária Falciparum/genética , Malária Falciparum/metabolismo , Mutação/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/genética
7.
J Infect Dis ; 215(3): 456-465, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932618

RESUMO

Chlamydia is an obligate intracellular bacterium that relies on host cells for essential nutrients and adenosine triphosphate (ATP) for a productive infection. Although the unfolded protein response (UPR) plays a major role in certain microbial infectivity, its role in chlamydial pathogenesis is unknown. We hypothesized that Chlamydia induces UPR and exploits it to upregulate host cell uptake and metabolism of glucose, production of ATP, phospholipids, and other molecules required for its replicative development and host survival. Using a combination of biochemical and pathway inhibition assays, we showed that the 3 UPR pathway transducers-protein kinase RNA-activated (PKR)-like ER kinase (PERK), inositol-requiring enzyme-1α (IRE1α), and activating transcription factor-6α (ATF6α)-were activated during Chlamydia infection. The kinase activity of PERK and ribonuclease (RNase) of IRE1α mediated the upregulation of hexokinase II and production of ATP via substrate-level phosphorylation. In addition, the activation of PERK and IRE1α promoted autophagy formation and apoptosis resistance for host survival. Moreover, the activation of IRE1α resulted in the generation of spliced X-box binding protein 1 (sXBP1) and upregulation of lipid production. The vital role of UPR pathways in Chlamydia development and pathogenesis could lead to the identification of potential molecular targets for therapeutics against Chlamydia.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia/patogenicidade , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose , Sobrevivência Celular , Infecções por Chlamydia/metabolismo , Endorribonucleases/metabolismo , Ativação Enzimática , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , eIF-2 Quinase/metabolismo
8.
Am J Respir Cell Mol Biol ; 56(5): 657-666, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28208028

RESUMO

The long-term health effects of wildfire smoke exposure in pediatric populations are not known. The objectives of this study were to determine if early life exposure to wildfire smoke can affect parameters of immunity and airway physiology that are detectable with maturity. We studied a mixed-sex cohort of rhesus macaque monkeys that were exposed as infants to ambient wood smoke from a series of Northern California wildfires in the summer of 2008. Peripheral blood mononuclear cells (PBMCs) and pulmonary function measures were obtained when animals were approximately 3 years of age. PBMCs were cultured with either LPS or flagellin, followed by measurement of secreted IL-8 and IL-6 protein. PBMCs from a subset of female animals were also evaluated by Toll-like receptor (TLR) pathway mRNA analysis. Induction of IL-8 protein synthesis with either LPS or flagellin was significantly reduced in PBMC cultures from wildfire smoke-exposed female monkeys. In contrast, LPS- or flagellin-induced IL-6 protein synthesis was significantly reduced in PBMC cultures from wildfire smoke-exposed male monkeys. Baseline and TLR ligand-induced expression of the transcription factor, RelB, was globally modulated in PBMCs from wildfire smoke-exposed monkeys, with additional TLR pathway genes affected in a ligand-dependent manner. Wildfire smoke-exposed monkeys displayed significantly reduced inspiratory capacity, residual volume, vital capacity, functional residual capacity, and total lung capacity per unit of body weight relative to control animals. Our findings suggest that ambient wildfire smoke exposure during infancy results in sex-dependent attenuation of systemic TLR responses and reduced lung volume in adolescence.


Assuntos
Envelhecimento/fisiologia , Exposição Ambiental , Incêndios , Pulmão/imunologia , Pulmão/fisiopatologia , Fumaça , Poluição do Ar/análise , Animais , Peso Corporal , California , Feminino , Leucócitos Mononucleares/metabolismo , Ligantes , Modelos Lineares , Macaca mulatta , Masculino , NF-kappa B/metabolismo , Tamanho da Partícula , Material Particulado/análise , Testes de Função Respiratória , Receptores Toll-Like/metabolismo
9.
BMC Immunol ; 18(1): 27, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28525970

RESUMO

BACKGROUND: We have previously reported that interleukin-10 (IL-10) deficient dendritic cells (DCs) are potent antigen presenting cells that induced elevated protective immunity against Chlamydia. To further investigate the molecular and biochemical mechanism underlying the superior immunostimulatory property of IL-10 deficient DCs we performed proteomic analysis on protein profiles from Chlamydia-pulsed wild-type (WT) and IL-10-/- DCs to identify differentially expressed proteins with immunomodulatory properties. RESULTS: The results showed that alpha enolase (ENO1), a metabolic enzyme involved in the last step of glycolysis was significantly upregulated in Chlamydia-pulsed IL-10-/- DCs compared to WT DCs. We further studied the immunoregulatory role of ENO1 in DC function by generating ENO1 knockdown DCs, using lentiviral siRNA technology. We analyzed the effect of the ENO1 knockdown on DC functions after pulsing with Chlamydia. Pyruvate assay, transmission electron microscopy, flow cytometry, confocal microscopy, cytokine, T-cell activation and adoptive transfer assays were also used to study DC function. The results showed that ENO1 knockdown DCs had impaired maturation and activation, with significant decrease in intracellular pyruvate concentration as compared with the Chlamydia-pulsed WT DCs. Adoptive transfer of Chlamydia-pulsed ENO1 knockdown DCs were poorly immunogenic in vitro and in vivo, especially the ability to induce protective immunity against genital chlamydia infection. The marked remodeling of the mitochondrial morphology of Chlamydia-pulsed ENO1 knockdown DCs compared to the Chlamydia-pulsed WT DCs was associated with the dysregulation of translocase of the outer membrane (TOM) 20 and adenine nucleotide translocator (ANT) 1/2/3/4 that regulate mitochondrial permeability. The results suggest that an enhanced glycolysis is required for efficient antigen processing and presentation by DCs to induce a robust immune response. CONCLUSIONS: The upregulation of ENO1 contributes to the superior immunostimulatory function of IL-10 deficient DCs. Our studies indicated that ENO1 deficiency causes the reduced production of pyruvate, which then contributes to a dysfunction in mitochondrial homeostasis that may affect DC survival, maturation and antigen presenting properties. Modulation of ENO1 thus provides a potentially effective strategy to boost DC function and promote immunity against infectious and non-infectious diseases.


Assuntos
Biomarcadores Tumorais/genética , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Proteínas de Ligação a DNA/genética , Células Dendríticas/fisiologia , Genitália/imunologia , Fosfopiruvato Hidratase/genética , Proteínas Supressoras de Tumor/genética , Animais , Apresentação de Antígeno , Biomarcadores Tumorais/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/microbiologia , Feminino , Genitália/microbiologia , Imunidade Inata , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteômica , Ácido Pirúvico/metabolismo , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
10.
J Clin Microbiol ; 55(7): 2035-2044, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28404679

RESUMO

Infections of the central nervous system (CNS) are often acute, with significant morbidity and mortality. Routine diagnosis of such infections is limited in developing countries and requires modern equipment in advanced laboratories that may be unavailable to a number of patients in sub-Saharan Africa. We developed a TaqMan array card (TAC) that detects multiple pathogens simultaneously from cerebrospinal fluid. The 21-pathogen CNS multiple-pathogen TAC (CNS-TAC) assay includes two parasites (Balamuthia mandrillaris and Acanthamoeba), six bacterial pathogens (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Mycoplasma pneumoniae, Mycobacterium tuberculosis, and Bartonella), and 13 viruses (parechovirus, dengue virus, Nipah virus, varicella-zoster virus, mumps virus, measles virus, lyssavirus, herpes simplex viruses 1 and 2, Epstein-Barr virus, enterovirus, cytomegalovirus, and chikungunya virus). The card also includes human RNase P as a nucleic acid extraction control and an internal manufacturer control, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). This CNS-TAC assay can test up to eight samples for all 21 agents within 2.5 h following nucleic acid extraction. The assay was validated for linearity, limit of detection, sensitivity, and specificity by using either live viruses (dengue, mumps, and measles viruses) or nucleic acid material (Nipah and chikungunya viruses). Of 120 samples tested by individual real-time PCR, 35 were positive for eight different targets, whereas the CNS-TAC assay detected 37 positive samples across nine different targets. The CNS-TAC assays showed 85.6% sensitivity and 96.7% specificity. Therefore, the CNS-TAC assay may be useful for outbreak investigation and surveillance of suspected neurological disease.


Assuntos
Infecções do Sistema Nervoso Central/diagnóstico , Técnicas Microbiológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Adolescente , Adulto , África Subsaariana , Idoso , Idoso de 80 Anos ou mais , Amebozoários/isolamento & purificação , Bactérias/isolamento & purificação , Infecções do Sistema Nervoso Central/microbiologia , Infecções do Sistema Nervoso Central/parasitologia , Infecções do Sistema Nervoso Central/virologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Sensibilidade e Especificidade , Vírus/isolamento & purificação , Adulto Jovem
11.
Sex Transm Infect ; 93(7): 503-507, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28476913

RESUMO

BACKGROUND: There is limited information on rates of STIs in Jamaica due to syndromic management and limited aetiological surveillance. We examined the prevalence of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG) and Trichomonas vaginalis (TV) and characteristics associated with STIs among sexually active women who participated in a randomised trial of a progestin implant initiation in Jamaica (the Sino-Implant Study (SIS)). METHODS: SIS was a randomised trial conducted in Kingston, Jamaica, from 2012 to 2014 to evaluate whether initiation of the Sino-Implant (II) led to more unprotected sex among women ages 18-44 years. Data collected included self-reported demographic, sexual behaviour information; and vaginal swabs collected at baseline, 1-month and 3-month follow-up visits for a biomarker of recent semen exposure (prostate-specific antigen (PSA)) and for STIs. We examined associations between STIs and PSA, demographics, sexual behaviour and insertion of an implant, with a repeated-measures analysis using generalised estimating equations (SAS Institute, V.9.3). RESULTS: Remnant vaginal swabs from 254 of 414 study participants were tested for STIs. At baseline, 29% of participants tested for STIs (n=247) had laboratory-confirmed CT, 5% NG, 23% TV and 45% any STI. In a repeated-measures analysis adjusted for study arm (immediate vs delayed implant insertion), those with PSA detected did not have an increased prevalence of any STI (prevalence ratio (PR)=1.04 (95% CI 0.89 to 1.21)), whereas prevalence decreased for each 1-year increase in age (PR=0.98 (95% CI 0.97 to 0.99)). Immediate implant insertion was not associated with increases in any STI in subsequent visits (PR=1.09 (95% CI 0.94 to 1.27)). CONCLUSIONS: Although the prevalence of laboratory-confirmed STIs was high, the immediate initiation of a contraceptive implant was not associated with higher STI prevalence rates over 3 months. TRIAL REGISTRATION NUMBER: NCT01684358.


Assuntos
Comportamento Contraceptivo , Dispositivos Intrauterinos/estatística & dados numéricos , Comportamento Sexual/estatística & dados numéricos , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções Sexualmente Transmissíveis/transmissão , Sexo sem Proteção/estatística & dados numéricos , Adulto , Preservativos/estatística & dados numéricos , Anticoncepcionais Femininos/administração & dosagem , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Jamaica/epidemiologia , Prevalência , Fatores de Risco , Comportamento Sexual/psicologia , Infecções Sexualmente Transmissíveis/prevenção & controle , Infecções Sexualmente Transmissíveis/psicologia , Sexo sem Proteção/psicologia
12.
Infect Immun ; 83(12): 4662-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26371131

RESUMO

Interleukin-10 (IL-10) has been implicated in susceptibility to genital chlamydial infection and the development of tubal pathologies. IL-10 limitation also resulted in the rapid elicitation of immune responses against Chlamydia, and decreased levels of IL-10 correlated with protective anti-Chlamydia immunity. To investigate the molecular basis for these effects, we compared the reproductive pathologies and fertility rates in Chlamydia-infected wild-type (WT) and IL-10-knockout (IL-10(-/-)) mice; we also analyzed the expression of the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily, IL-1ß production, NLRP3 inflammasome assembly and activation, and the immunostimulatory capacity and apoptotic predilection of Chlamydia-exposed dendritic cells (DCs) from WT and IL-10(-/-) mice. Our results revealed that, in addition to the rapid clearance of infection, genitally infected IL-10(-/-) mice were protected from tubal pathologies and infertility, whereas WT (IL-10(+/+)) mice were not. Chlamydia-pulsed IL-10(-/-) DCs expressed larger numbers of TLR4/IL-1R molecules and had enhanced IL-1ß production. In addition, NLRP3 inflammasome assembly was suppressed in IL-10(-/-) DCs through the inhibition of the P2X purinoceptor 7 (P2X7) receptor (P2X7R), an ATP-gated ion channel, and a decrease in intracellular Ca(2+) levels, which inhibited DC apoptosis. Thus, the potent immunostimulatory capacity of IL-10-deficient DCs is due, at least in part, to the suppression of the intracellular inflammasome assembly, which prevents DC apoptosis, allowing efficient antigen presentation. The results indicate that IL-10 deficiency enables efficient antigen presentation by DCs for rapid and enhanced immune activation against Chlamydia, which results in rapid microbial clearance, which prevents tubal pathologies during infection. Our finding has important implications for the induction of protective immunity against Chlamydia and other infectious and noninfectious diseases by vaccines.


Assuntos
Proteínas de Transporte/imunologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Células Dendríticas/imunologia , Fertilidade/imunologia , Interleucina-10/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno , Apoptose/imunologia , Cálcio/imunologia , Cálcio/metabolismo , Proteínas de Transporte/genética , Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/patogenicidade , Células Dendríticas/microbiologia , Células Dendríticas/transplante , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/imunologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
13.
BMC Immunol ; 15: 584, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551828

RESUMO

BACKGROUND: We previously showed that the Vibrio cholerae ghost platform (VCG; empty V. cholerae cell envelopes) is an effective delivery system for vaccine antigens promoting the induction of substantial immunity in the absence of external adjuvants. However, the mechanism by which these cell envelopes enhance immunity and stimulate a predominantly Th1 cellular and humoral immune response has not been elucidated. We hypothesized that the immunostimulatory ability of VCG involves dendritic cell (DC) activation. OBJECTIVE: The aims of this study were: a) to investigate the ability of DCs [using mouse bone marrow-derived DCs (BMDCs) as a model system] to take up and internalize VCGs; b) to evaluate the immunomodulatory effect of internalized VCGs on DC activation and maturation and their functional capacity to present chlamydial antigen to naïve and infection-sensitized CD4+ T cells and; c) to evaluate the ability of VCGs to enhance the protective immunity of a chlamydial antigen. RESULTS: VCGs were efficiently internalized by DCs without affecting their viability and modulated DC-mediated immune responses. VCG-pulsed DCs showed increased secretion of proinflammatory cytokines and expression of co-stimulatory molecules associated with DC maturation in response to stimulation with UV-irradiated chlamydial elementary bodies (UV-EBs). Furthermore, this interaction resulted in effective chlamydial antigen presentation to infection-sensitized but not naïve CD4+ T cells and enhancement of protective immunity. CONCLUSIONS: The present study demonstrated that VCGs activate DCs leading to the surface expression of co-stimulatory molecules associated with DC activation and maturation and enhancement of protective immunity induced by a chlamydial antigen. The results indicate that the immunoenhancing activity of VCG for increased T-cell activation against antigens is mediated, at least in part, through DC triggering. Thus, VCGs could be harnessed as immunomodulators to target antigens to DCs for enhancement of protective immunity against microbial infections.


Assuntos
Apresentação de Antígeno , Antígenos de Bactérias , Chlamydia trachomatis , Células Dendríticas/imunologia , Células Th1/imunologia , Vibrio cholerae , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Chlamydia trachomatis/química , Chlamydia trachomatis/imunologia , Feminino , Células HeLa , Humanos , Ativação Linfocitária , Camundongos , Vibrio cholerae/química , Vibrio cholerae/imunologia
14.
J Infect Dis ; 207(7): 1095-104, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23303804

RESUMO

Tubal factor infertility (TFI) represents 36% of female infertility and genital infection by Chlamydia trachomatis (C. trachomatis) is a major cause. Although TFI is associated with host inflammatory responses to bacterial components, the molecular pathogenesis of Chlamydia-induced infertility remains poorly understood. We investigated the hypothesis that activation of specific cysteine proteases, the caspases, during C. trachomatis genital infection causes the disruption of key fertility-promoting molecules required for embryo development and implantation. We analyzed the effect of caspase inhibition on infertility and the integrity of Dicer, a caspase-sensitive, fertility-promoting ribonuclease III enzyme, and key micro-RNAs in the reproductive system. Genital infection with the inflammation- and caspase-inducing, wild-type C. trachomatis serovar L2 led to infertility, but the noninflammation-inducing, plasmid-free strain did not. We confirmed that caspase-mediated apoptotic tissue destruction may contribute to chlamydial pathogenesis. Caspase-1 or -3 deficiency, or local administration of the pan caspase inhibitor, Z-VAD-FMK into normal mice protected against Chlamydia-induced infertility. Finally, the oviducts of infected infertile mice showed evidence of caspase-mediated cleavage inactivation of Dicer and alteration in critical miRNAs that regulate growth, differentiation, and development, including mir-21. These results provide new insight into the molecular pathogenesis of TFI with significant implications for new strategies for treatment and prevention of chlamydial complications.


Assuntos
Caspase 1/metabolismo , Caspase 3/metabolismo , Chlamydia trachomatis/patogenicidade , Infertilidade Feminina/microbiologia , Infertilidade Feminina/prevenção & controle , Complicações Infecciosas na Gravidez/prevenção & controle , Animais , Apoptose , Caspase 1/genética , Caspase 3/genética , Infecções por Chlamydia/enzimologia , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Ativação Enzimática , Feminino , Células HeLa , Humanos , Infertilidade Feminina/enzimologia , Inflamação/microbiologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Complicações Infecciosas na Gravidez/enzimologia , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/patologia
15.
J Clin Neuromuscul Dis ; 25(3): 115-121, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441927

RESUMO

OBJECTIVE: Ultrasound studies in inclusion body myositis (IBM) have reported a characteristic pattern of increased echointensity in the flexor digitorum profundus (FDP) with relative sparing of the flexor carpi ulnaris (FCU). We examined the relationship between echointensity of the FDP and FCU muscles and hand strength or patient-reported outcomes (PROs). METHODS: A total of 15 patients with IBM were recruited. Ultrasound images of the FDP and FCU muscles were obtained by a point-of-care ultrasound and graded using the modified Heckmatt score. Hand grip and neutral pinch strength were measured by dynamometry. PROs were assessed by the IBM Upper Extremity Function Scale. RESULTS: FDP and/or FCU modified Heckmatt score showed a significant relationship with grip, neutral pinch strength, and PROs. CONCLUSIONS: Point-of-care ultrasound examination of the forearm may serve as an extension of the neuromuscular examination. The semi-qualitative echointensity rating based on modified Heckmatt score seems to correlate well with the objective strength measurement and PROs.


Assuntos
Miosite de Corpos de Inclusão , Humanos , Miosite de Corpos de Inclusão/diagnóstico por imagem , Força da Mão , Extremidade Superior , Mãos/diagnóstico por imagem , Ultrassonografia
16.
J Clin Microbiol ; 51(4): 1298-300, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23390274

RESUMO

Trichomonas vaginalis infections are usually asymptomatic or can result in nonspecific clinical symptoms, which makes laboratory-based detection of this protozoan parasite essential for diagnosis and treatment. We report the development of a battery of highly sensitive and specific PCR assays for detection of T. vaginalis in urine, a noninvasive specimen, and development of a protocol for differentiating among Trichomonas species that commonly infect humans.


Assuntos
Técnicas de Laboratório Clínico/métodos , Técnicas de Diagnóstico Molecular/métodos , Parasitologia/métodos , Reação em Cadeia da Polimerase/métodos , Tricomoníase/diagnóstico , Trichomonas vaginalis/isolamento & purificação , Urina/parasitologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Sensibilidade e Especificidade , Trichomonas vaginalis/classificação , Trichomonas vaginalis/genética
18.
J Immunol ; 181(6): 4037-42, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18768859

RESUMO

We investigated the hypothesis that the enhanced Ag-presenting function of IL-10-deficient dendritic cells (DCs) is related to specific immunoregulatory cytoskeletal molecules expressed when exposed to Ags. We analyzed the role of a prominent cytoskeletal protein, LEK1, in the immunoregulation of DC functions; specifically cytokine secretion, costimulatory molecule expression, and T cell activation against Chlamydia. Targeted knockdown of LEK1 expression using specific antisense oligonucleotides resulted in the rapid maturation of Chlamydia-exposed DCs as measured by FACS analysis of key activation markers (i.e., CD14, CD40, CD54, CD80, CD86, CD197, CD205, and MHC class II). The secretion of mostly Th1 cytokines and chemokines (IL-1a, IL-9, IL-12, MIP-1a, and GM-CSF but not IL-4 and IL-10) was also enhanced by blocking of LEK1. The function of LEK1 in DC regulation involves cytoskeletal changes, since the dynamics of expression of vimentin and actin, key proteins of the cellular cytoskeleton, were altered after exposure of LEK1 knockdown DCs to Chlamydia. Furthermore, targeted inhibition of LEK1 expression resulted in the enhancement of the immunostimulatory capacity of DCs for T cell activation against Chlamydia. Thus, LEK1 knockdown DCs activated immune T cells at least 10-fold over untreated DCs. These results suggest that the effect of IL-10 deficiency is mediated through LEK1-related events that lead to rapid maturation of DCs and acquisition of the capacity to activate an elevated T cell response. Targeted modulation of LEK1 expression provides a novel strategy for augmenting the immunostimulatory function of DCs for inducing an effective immunity against pathogens.


Assuntos
Chlamydia trachomatis/imunologia , Proteínas Cromossômicas não Histona/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/microbiologia , Animais , Biomarcadores/análise , Diferenciação Celular/imunologia , Células Cultivadas , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/biossíntese , Proteínas Cromossômicas não Histona/deficiência , Citocinas/biossíntese , Citocinas/genética , Citocinas/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/fisiologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Interleucina-10/antagonistas & inibidores , Interleucina-10/biossíntese , Interleucina-10/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Oligonucleotídeos Antissenso/farmacologia , Subpopulações de Linfócitos T/metabolismo
19.
Sci Rep ; 10(1): 15389, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958779

RESUMO

Shift work, performed by approximately 21 million Americans, is irregular or unusual work schedule hours occurring after 6:00 pm. Shift work has been shown to disrupt circadian rhythms and is associated with several adverse health outcomes and chronic diseases such as cancer, gastrointestinal and psychiatric diseases and disorders. It is unclear if shift work influences the complications associated with certain infectious agents, such as pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility resulting from genital chlamydial infection. We used an Environmental circadian disruption (ECD) model mimicking circadian disruption occurring during shift work, where mice had a 6-h advance in the normal light/dark cycle (LD) every week for a month. Control group mice were housed under normal 12/12 LD cycle. Our hypothesis was that compared to controls, mice that had their circadian rhythms disrupted in this ECD model will have a higher Chlamydia load, more pathology and decreased fertility rate following Chlamydia infection. Results showed that, compared to controls, mice that had their circadian rhythms disrupted (ECD) had higher Chlamydia loads, more tissue alterations or lesions, and lower fertility rate associated with chlamydial infection. Also, infected ECD mice elicited higher proinflammatory cytokines compared to mice under normal 12/12 LD cycle. These results imply that there might be an association between shift work and the increased likelihood of developing more severe disease from Chlamydia infection.


Assuntos
Infecções por Chlamydia/etiologia , Ritmo Circadiano/fisiologia , Jornada de Trabalho em Turnos/efeitos adversos , Animais , Chlamydia/patogenicidade , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/patologia , Chlamydia muridarum/patogenicidade , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Doença Inflamatória Pélvica/etiologia , Fotoperíodo , Gravidez , Gravidez Ectópica/etiologia
20.
J Clin Microbiol ; 47(1): 215-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19005149

RESUMO

We evaluated the performance of the BioStar Chlamydia OIA (optical immunoassay) in adolescent females (n = 261) from an inner city population. With a reference standard of two different nucleic acid amplification tests, the sensitivity and specificity of the BioStar Chlamydia OIA were 59.4 and 98.4%, respectively. Due to its relatively low sensitivity, the BioStar Chlamydia OIA should only be used in conjunction with more sensitive laboratory tests unless laboratory tests are unavailable or timely return for treatment is unlikely.


Assuntos
Técnicas Bacteriológicas/métodos , Infecções por Chlamydia/diagnóstico , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/isolamento & purificação , Adolescente , Feminino , Humanos , Imunoensaio , Sensibilidade e Especificidade , População Urbana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA