Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt A): 116468, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419299

RESUMO

The number of micro-scale spirit distilleries worldwide has grown considerably over the past decade. With an onus on the distillery sector to reduce its environmental impact, such as carbon emissions, opportunities for increasing energy efficiency need to be implemented. This study explores the potential environmental benefits and financial gains achievable through heat recovery from different process and by-product streams, exemplified for a Scotch whisky distillery, but transferrable to micro-distilleries worldwide. The eco-efficiency methodology is applied, taking into account both climate change and water scarcity impacts as well as economic performance of alcohol production with and without heat recovery. A Life Cycle Assessment, focusing on climate change and water scarcity, is combined with a financial assessment considering investment costs and the present value of the savings over the 20-year service life of the heat recovery system. The proposed heat recovery systems allow carbon emission reductions of 8-23% and water scarcity savings of 13-55% for energy and water provision for 1 L of pure alcohol (LPA). Financial savings are comparatively smaller, at 5-13%, due to discounting of the future savings - but offer a simple payback of the investment costs in under two years. The eco-efficiency of the distillery operations can be improved through all proposed heat recovery configurations, but best results are obtained when heat is recovered from mashing, distillations and by-products altogether. A sensitivity analysis confirmed that the methodology applied here delivers robust results and can help guide other micro-distilleries on whether to invest in heat recovery systems, and/or the heat recovery configuration. Uptake should be enhanced through increased information and planning support, and in cases where the distillery offers insufficient heat and water sinks to use all pre-warmed water, opportunities to link with a heat sink outside the distillery are encouraged. A 10% reduction in heating fuel use through heat recovery has the potential to save 47 kt of CO2 eq. or £7.4 M per annum in United Kingdom malt whisky production alone, based on current fuel types used and current prices (2021).


Assuntos
Temperatura Alta , Água , Etanol , Mudança Climática , Carbono
2.
Environ Int ; 130: 104870, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226560

RESUMO

Industrialised agriculture is heavily reliant upon synthetic nitrogen fertilisers and imported protein feeds, posing environmental and food security challenges. Increasing the cultivation of leguminous crops that biologically fix nitrogen and provide high protein feed and food could help to address these challenges. We report on the innovative use of an important leguminous crop, pea (Pisum sativum L.), as a source of starch for alcohol (gin) production, yielding protein-rich animal feed as a co-product. We undertook life cycle assessment (LCA) to compare the environmental footprint of 1 L of packaged gin produced from either 1.43 kg of wheat grain or 2.42 kg of peas via fermentation and distillation into neutral spirit. Allocated environmental footprints for pea-gin were smaller than for wheat-gin across 12 of 14 environmental impact categories considered. Global warming, resource depletion, human toxicity, acidification and terrestrial eutrophication footprints were, respectively, 12%, 15%, 15%, 48% and 68% smaller, but direct land occupation was 112% greater, for pea-gin versus wheat-gin. Expansion of LCA boundaries indicated that co-products arising from the production of 1 L of wheat- or pea-gin could substitute up to 0.33 or 0.66 kg soybean animal feed, respectively, mitigating considerable greenhouse gas emissions associated with land clearing, cultivation, processing and transport of such feed. For pea-gin, this mitigation effect exceeds emissions from gin production and packaging, so that each L of bottled pea gin avoids 2.2 kg CO2 eq. There is great potential to scale the use of legume starches in production of alcoholic beverages and biofuels, reducing dependence on Latin American soybean associated with deforestation and offering considerable global mitigation potential in terms of climate change and nutrient leakage - estimated at circa 439 Tg CO2 eq. and 8.45 Tg N eq. annually.


Assuntos
Bebidas Alcoólicas , Ração Animal , Mudança Climática , Pisum sativum , Proteínas de Plantas , Europa (Continente) , Amido
3.
Data Brief ; 25: 104242, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31485464

RESUMO

Benchmarking the environmental sustainability of alcohol produced from legume starch against alcohol produced from cereal grains requires considering of crop production, nutrient cycling and use of protein-rich co-products via life cycle assessment. This article describes the mass balance flows behind the life cycle inventories for gin produced from wheat and peas (Pisum sativum L.) in an associated article summarising the environmental footprints of wheat- and pea-gin [1], and also presents detailed supplementary results. Activity data were collected from interviews with actors along the entire gin value chain including a distillery manager and ingredient and packaging suppliers. Important fertiliser and animal-feed substitution effects of co-product use were derived using detailed information and models on nutrient flows and animal feed composition, along with linear optimisation modelling. Secondary data on environmental burdens of specific materials and processes were obtained from the Ecoinvent v3.4 life cycle assessment database. This article provides a basis for further quantitative evaluation of the environmental sustainability of legume-alcohol value chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA