Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898280

RESUMO

Spin accumulation in semiconductor structures at room temperature and without magnetic fields is key to enable a broader range of optoelectronic functionality1. Current efforts are limited owing to inherent inefficiencies associated with spin injection across semiconductor interfaces2. Here we demonstrate spin injection across chiral halide perovskite/III-V interfaces achieving spin accumulation in a standard semiconductor III-V (AlxGa1-x)0.5In0.5P multiple quantum well light-emitting diode. The spin accumulation in the multiple quantum well is detected through emission of circularly polarized light with a degree of polarization of up to 15 ± 4%. The chiral perovskite/III-V interface was characterized with X-ray photoelectron spectroscopy, cross-sectional scanning Kelvin probe force microscopy and cross-sectional transmission electron microscopy imaging, showing a clean semiconductor/semiconductor interface at which the Fermi level can equilibrate. These findings demonstrate that chiral perovskite semiconductors can transform well-developed semiconductor platforms into ones that can also control spin.

2.
J Am Chem Soc ; 145(4): 2052-2057, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649211

RESUMO

The development of metal halide perovskite/perovskite heterostructures is hindered by rapid interfacial halide diffusion leading to mixed alloys rather than sharp interfaces. To circumvent this outcome, we developed an ion-blocking layer consisting of single-layer graphene (SLG) deposited between the metal halide perovskite layers and demonstrated that it effectively blocks anion diffusion in a CsPbBr3/SLG/CsPbI3 heterostructure. Spatially resolved elemental analysis and spectroscopic measurements demonstrate the halides do not diffuse across the interface, whereas control samples without the SLG show rapid homogenization of the halides and loss of the sharp interface. Ultraviolet photoelectron spectroscopy, DFT calculations, and transient absorbance spectroscopy indicate the SLG has little electronic impact on the individual semiconductors. In the CsPbBr3/SLG/CsPbI3, we find a type I band alignment that supports transfer of photogenerated carriers across the heterointerface. Light-emitting diodes (LEDs) show electroluminescence from both the CsPbBr3 and CsPbI3 layers with no evidence of ion diffusion during operation. Our approach provides opportunities to design novel all-perovskite heterostructures to facilitate the control of charge and light in optoelectronic applications.

3.
Chem Rev ; 121(20): 12465-12547, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34702037

RESUMO

Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this tremendous amount of energy holds significant promise for a more sustainable society. While traditional solid-state inorganic semiconductors have dominated the research stage on thermal-to-electrical energy conversion, carbon-based semiconductors have recently attracted a great deal of attention as potential thermoelectric materials for low-temperature energy harvesting, primarily driven by the high abundance of their atomic elements, ease of processing/manufacturing, and intrinsically low thermal conductivity. This quest for new materials has resulted in the discovery of several new kinds of thermoelectric materials and concepts capable of converting a heat flux into an electrical current by means of various types of particles transporting the electric charge: (i) electrons, (ii) ions, and (iii) redox molecules. This has contributed to expanding the applications envisaged for thermoelectric materials far beyond simple conversion of heat into electricity. This is the motivation behind this review. This work is divided in three sections. In the first section, we present the basic principle of the thermoelectric effects when the particles transporting the electric charge are electrons, ions, and redox molecules and describe the conceptual differences between the three thermodiffusion phenomena. In the second section, we review the efforts made on developing devices exploiting these three effects and give a thorough understanding of what limits their performance. In the third section, we review the state-of-the-art thermoelectric materials investigated so far and provide a comprehensive understanding of what limits charge and energy transport in each of these classes of materials.


Assuntos
Eletricidade , Temperatura
4.
Nano Lett ; 22(22): 9100-9106, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326598

RESUMO

Both solar cells and photosynthetic systems employ a two-step process of light absorption and energy conversion. In photosynthesis, they are performed by distinct proteins. However, conventional solar cells use the same semiconductor for optical absorption and electron-hole separation, leading to inefficiencies. Here, we show that an all-semiconducting single-walled carbon nanotube (s-SWCNTs) device provides an artificial system that models photosynthesis in a tandem geometry. We use distinct chirality s-SWCNTs to separate the site and direction of light absorption from those of power generation. Using different bandgap s-SWCNTs, we implement an energy funnel in dual-gated p-n diodes. The device captures photons from multiple regions of the solar spectrum and funnels photogenerated excitons to the smallest bandgap s-SWCNT layer, where they become free carriers. We demonstrate an increase in the photoresponse by adding more s-SWCNT layers of different bandgaps without a corresponding deleterious increase in the dark leakage current.


Assuntos
Nanotubos de Carbono , Fotossíntese , Luz Solar , Semicondutores , Fótons
5.
Nano Lett ; 19(12): 9037-9044, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682759

RESUMO

Indistinguishable single photon generation at telecom wavelengths from solid-state quantum emitters remains a significant challenge to scalable quantum information processing. Here we demonstrate efficient generation of "indistinguishable" single photons directly in the telecom O-band from aryl-functionalized carbon nanotubes by overcoming the emitter quantum decoherence with plasmonic nanocavities. With an unprecedented single-photon spontaneous emission time down to 10 ps (from initially 0.7 ns) generated in the coupling scheme, we show a two-photon interference visibility at 4 K reaching up to 0.79, even without applying post selection. Cavity-enhanced quantum yields up to 74% and Purcell factors up to 415 are achieved with single-photon purities up to 99%. Our results establish the capability to fabricate fiber-based photonic devices for quantum information technology with coherent properties that can enable quantum logic.

6.
Nano Lett ; 18(2): 865-873, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29364676

RESUMO

We have prepared a series of samples with the ligand 6,13-bistri(iso-propyl)silylethynyl tetracene 2-carboxylic acid (TIPS-Tc-COOH) attached to PbS quantum dot (QD) samples of three different sizes in order to monitor and control the extent and time scales of energy flow after photoexcitation. Fast energy transfer (∼1 ps) to the PbS QD occurs upon direct excitation of the ligand for all samples. The largest size QD maintains the microsecond exciton lifetime characteristic of the as-prepared oleate terminated PbS QDs. However, two smaller QD sizes with lowest exciton energies similar to or larger than the TIPS-Tc-COO- triplet energy undergo energy transfer between QD core and ligand triplet on nanosecond to microsecond timescales. For the intermediate size QDs in particular, energy can be recycled many times between ligand and core, but the triplet remains the dominant excited species at long times, living for ∼3 µs for fully exchanged QDs and up to 30 µs for partial ligand exchange, which is revealed as a method for controlling the triplet lifetime. A unique upconverted luminescence spectrum is observed that results from annihilation of triplets after exclusive excitation of the QD core.

7.
J Am Chem Soc ; 140(1): 441-450, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29281274

RESUMO

We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS2) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS2 nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS2 functionalized with the most electron donating functional group (p-(CH3CH2)2NPh-MoS2) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS2. The p-(CH3CH2)2NPh-MoS2 is more stable than unfunctionalized metallic MoS2 and outperforms unfunctionalized metallic MoS2 for continuous H2 evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS2 nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS2 nanosheet. The functional groups preserve the metallic nature of the MoS2 nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS2 nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS2 and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.

8.
Nano Lett ; 15(3): 1511-6, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25626139

RESUMO

We study the micro-Raman spectra of colloidal silicon nanocrystals as a function of size, excitation wavelength, and excitation intensity. We find that the longitudinal optical (LO) phonon spectrum is asymmetrically broadened toward the low energy side and exhibits a dip or antiresonance on the high-energy side, both characteristics of a Fano line shape. The broadening depends on both nanocrystal size and Raman excitation wavelength. We propose that the Fano line shape results from interference of the optical phonon response with a continuum of electronic states that become populated by intraband photoexcitation of carriers. The asymmetry exhibits progressive enhancement with decreasing particle size and with increasing excitation energy for a given particle size. We compare our observations with those reported for p- and n-doped bulk Si, where Fano interference has also been observed, but we find opposite wavelength dependence of the asymmetry for the bulk and nanocrystalline Si. Our results have important implications for potentially controlling carrier energy relaxation channels in strongly confined Si nanocrystals.

9.
Angew Chem Int Ed Engl ; 54(49): 14758-62, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26460151

RESUMO

Compared to imaging in the visible and near-infrared regions below 900 nm, imaging in the second near-infrared window (NIR-II, 1000-1700 nm) is a promising method for deep-tissue high-resolution optical imaging in vivo mainly owing to the reduced scattering of photons traversing through biological tissues. Herein, semiconducting single-walled carbon nanotubes with large diameters were used for in vivo fluorescence imaging in the long-wavelength NIR region (1500-1700 nm, NIR-IIb). With this imaging agent, 3-4 µm wide capillary blood vessels at a depth of about 3 mm could be resolved. Meanwhile, the blood-flow speeds in multiple individual vessels could be mapped simultaneously. Furthermore, NIR-IIb tumor imaging of a live mouse was explored. NIR-IIb imaging can be generalized to a wide range of fluorophores emitting at up to 1700 nm for high-performance in vivo optical imaging.


Assuntos
Fluorescência , Imagem Molecular/métodos , Nanotubos de Carbono/química , Animais , Vasos Sanguíneos/química , Encéfalo/anatomia & histologia , Membro Posterior/anatomia & histologia , Camundongos , Semicondutores , Espectroscopia de Luz Próxima ao Infravermelho
10.
J Am Chem Soc ; 136(12): 4670-9, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24564575

RESUMO

We report the synthesis and characterization of Pb-chalcogenide fused quantum-dot (QD) dimer structures. The resulting QD dimers range in length from 6 to 16 nm and are produced by oriented attachment of single QD monomers with diameters of 3.1-7.8 nm. QD monomers with diameters exceeding about 5 nm appear to have the greatest affinity for QD dimer formation and, therefore, gave the greatest yields of fused structures. We find a new absorption feature in the first exciton QD dimer spectra and assign this to a splitting of the 8-fold degenerate 1S-level. The dimer splitting increases from 50 to 140 meV with decrease of the QD-monomer size, and we present a mechanism that accounts for this splitting. We also demonstrate the possibility of fusing two QDs with different sizes into a heterostructure.

11.
ACS Nano ; 18(11): 8190-8198, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38465641

RESUMO

Innovation in optoelectronic semiconductor devices is driven by a fundamental understanding of how to move charges and/or excitons (electron-hole pairs) in specified directions for doing useful work, e.g., for making fuels or electricity. The diverse and tunable electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) and one-dimensional (1D) semiconducting single-walled carbon nanotubes (s-SWCNTs) make them good quantum confined model systems for fundamental studies of charge and exciton transfer across heterointerfaces. Here we demonstrate a mixed-dimensionality 2D/1D/2D MoS2/SWCNT/WSe2 heterotrilayer that enables ultrafast photoinduced exciton dissociation, followed by charge diffusion and slow recombination. Importantly, the heterotrilayer serves to double charge carrier yield relative to a MoS2/SWCNT heterobilayer and also demonstrates the ability of the separated charges to overcome interlayer exciton binding energies to diffuse from one TMDC/SWCNT interface to the other 2D/1D interface, resulting in Coulombically unbound charges. Interestingly, the heterotrilayer also appears to enable efficient hole transfer from SWCNTs to WSe2, which is not observed in the identically prepared WSe2/SWCNT heterobilayer, suggesting that increasing the complexity of nanoscale trilayers may modify dynamic pathways. Our work suggests "mixed-dimensionality" TMDC/SWCNT based heterotrilayers as both interesting model systems for mechanistic studies of carrier dynamics at nanoscale heterointerfaces and for potential applications in advanced optoelectronic systems.

12.
Nanoscale Horiz ; 9(2): 278-284, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38044846

RESUMO

High-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices.

13.
Phys Chem Chem Phys ; 15(36): 14896-918, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23913009

RESUMO

The search for environmentally clean energy sources has spawned a wave of research into the use of carbon nanomaterials for photovoltaic applications. In particular, research using semiconducting single-walled carbon nanotubes has undergone dramatic transformations due to the availability of high quality samples through colloidal separation techniques. This has led to breakthrough discoveries on how energy and charge transport occurs in these materials and points to applications in energy harvesting. We present a review of the relevant photophysics of carbon nanotubes that dictate processes important for integration as active and passive material elements in thin film photovoltaics. Fundamental processes ranging from light absorption and internal conversion to exciton transport and dissociation are discussed in detail from both a spectroscopic and a device perspective. We also give a perspective on the future of these fascinating materials to be used as active and passive material elements in photovoltaics.

14.
Nano Lett ; 12(3): 1398-403, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22313425

RESUMO

A detailed knowledge of the manifold of both bright and dark excitons in single-walled carbon nanotubes (SWCNTs) is critical to understanding radiative and nonradiative recombination processes. Exciton-phonon coupling opens up additional absorption and emission channels, some of which may "brighten" the sidebands of optically forbidden (dark) excitonic transitions in optical spectra. In this report, we compare (12)C and (13)C-labeled SWCNTs that are highly enriched in the (6,5) species to identify both absorptive and emissive vibronic transitions. We find two vibronic sidebands near the bright (1)E(11) singlet exciton, one absorptive sideband ~200 meV above, and one emissive sideband ~140 meV below, the bright singlet exciton. Both sidebands demonstrate a ~50 cm(-1) isotope-induced shift, which is commensurate with exciton-phonon coupling involving phonons of A[Formula: see text] symmetry (D band, ω ~ 1330 cm(-1)). Independent analysis of each sideband indicates that both sidebands arise from the same dark exciton level, which lies at an energy approximately 25 meV above the bright singlet exciton. Our observations support the recent prediction of, and mounting experimental evidence for, the dark K-momentum singlet exciton lying ~25 meV (for the (6,5) SWCNT) above the bright Γ-momentum singlet. This study represents the first use of (13)C-labeled SWCNTs highly enriched in a single nanotube species to unequivocally confirm these sidebands as vibronic sidebands of the dark K-momentum singlet exciton.


Assuntos
Modelos Químicos , Modelos Moleculares , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Radioisótopos de Carbono/química , Simulação por Computador , Tamanho da Partícula , Vibração
15.
Adv Mater ; 35(37): e2205459, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36120918

RESUMO

Metal halide perovskite based materials have emerged over the past few decades as remarkable solution-processable optoelectronic materials with many intriguing properties and potential applications. These emerging materials have recently been considered for their promise in low-energy memory and information processing applications. In particular, their large optical cross-sections, high photoconductance contrast, large carrier-diffusion lengths, and mixed electronic/ionic transport mechanisms are attractive for enabling memory elements and neuromorphic devices that are written and/or read in the optical domain. Here, recent progress toward memory and neuromorphic functionality in metal halide perovskite materials and devices where photons are used as a critical degree of freedom for switching, memory, and neuromorphic functionality is reviewed.

16.
ACS Nano ; 17(3): 2190-2204, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36669768

RESUMO

The excitonic structure of single-wall carbon nanotubes (SWCNTs) is chirality dependent and consists of multiple singlet and triplet excitons (TEs) of which only one singlet exciton (SE) is optically bright. In particular, the dark TEs have a large impact on the integration of SWCNTs in optoelectronic devices, where excitons are created electrically, such as in infrared light-emitting diodes, thereby strongly limiting their quantum efficiency. Here, we report the characterization of TEs in chirality-purified samples of (6,5) and (7,5) SWCNTs, either randomly oriented in a frozen solution or with in-plane preferential orientation in a film, by means of optically detected magnetic resonance (ODMR) spectroscopy. In both chiral structures, the nanotubes are shown to sustain three types of TEs. One TE exhibits axial symmetry with zero-field splitting (ZFS) parameters depending on SWCNT diameter, in good agreement with the tighter confinement expected in narrower-diameter nanotubes. The ZFS of this TE also depends on nanotube environment, pointing to slightly weaker confinement for surfactant-coated than for polymer-wrapped SWCNTs. A second TE type, with much smaller ZFS, does not show the same systematic trends with diameter and environment and has a less well-defined axial symmetry. This most likely corresponds to TEs trapped at defect sites at low temperature, as exemplified by comparing SWCNT samples from different origins and after different treatments. A third triplet has unresolved ZFS, implying it originates from weakly interacting spin pairs. Aside from the diameter dependence, ODMR thus provides insights in both the symmetry, confinement, and nature of TEs on semiconducting SWCNTs.

17.
J Am Chem Soc ; 134(10): 4850-6, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22332844

RESUMO

The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the noncovalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT (13)C chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of (13)C labeling and density gradient ultracentrifugation (DGU) to produce an array of (13)C-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic (13)C chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the (13)C chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Nanotubos de Carbono , Isótopos de Carbono , Espectrofotometria Ultravioleta , Análise Espectral Raman , Ultracentrifugação
18.
J Am Chem Soc ; 134(30): 12485-91, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22746552

RESUMO

In this work, we investigate the impact of the solvation environment on single-walled carbon nanotube (SWCNT) photoluminescence quantum yield and optical transition energies (E(ii)) using a highly charged aryleneethynylene polymer. This novel surfactant produces dispersions in a variety of polar solvents having a wide range of dielectric constants (methanol, dimethyl sulfoxide, aqueous dimethylformamide, and deuterium oxide). Because a common surfactant can be used while maintaining a constant SWCNT-surfactant morphology, we are able to straightforwardly evaluate the impact of the solvation environment upon SWCNT optical properties. We find that (i) the SWCNT quantum yield is strongly dependent on both the polarity and electrophilicity of the solvent and (ii) solvatochromic shifts correlate with the extent of SWCNT solvation. These findings provide a deeper understanding of the environmental dependence of SWCNT excitonic properties and underscore that the solvent provides a tool with which to modulate SWCNT electronic and optical properties.

19.
Nanoscale ; 14(3): 752-765, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34940772

RESUMO

Two-dimensional metal-halide perovskites (MHPs) are versatile solution-processed organic/inorganic quantum wells where the structural anisotropy creates profound anisotropy in their electronic and excitonic properties and associated optical constants. We here employ a wholistic framework, based on semiempirical modeling (k·p/effective mass theory calculations) informed by hybrid density functional theory (DFT) and multimodal spectroscopic ellipsometry on (C6H5(CH2)2NH3)2PbI4 films and crystals, that allows us to link the observed optical properties and anisotropy precisely to the underlying physical parameters that shape the electronic structure of a layered MHP. We find substantial frequency-dependent anisotropy in the optical constants and close correspondence between experiment and theory, demonstrating a high degree of in-plane alignment of the two-dimensional planes in both spin-coated thin films and cleaved single crystals made in this study. Hybrid DFT results elucidate the degree to which organic and inorganic frontier orbitals contribute to optical transitions polarized along a particular axis. The combined experimental and theoretical approach enables us to estimate the fundamental electronic bandgap of 2.65-2.68 eV in this prototypical 2D perovskite and to determine the spin-orbit coupling (ΔSO = 1.20 eV) and effective crystal field (δ = -1.36 eV) which break the degeneracy of the frontier conduction band states and determine the exciton fine structure. The methods and results described here afford a better understanding of the connection between structure and induced optical anisotropy in quantum-confined MHPs, an important structure-property relationship for optoelectronic applications and devices.

20.
J Am Chem Soc ; 133(12): 4299-306, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21384925

RESUMO

We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.


Assuntos
Hidrogênio/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Nanotubos de Carbono/química , Biocatálise , Clostridium acetobutylicum/enzimologia , Eletroquímica , Eletrodos , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA