Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nitric Oxide ; 148: 23-33, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697467

RESUMO

Dietary nitrate (NO3-) supplementation can increase nitric oxide (NO) bioavailability, reduce blood pressure (BP) and improve muscle contractile function in humans. Plasma nitrite concentration (plasma [NO2-]) is the most oft-used biomarker of NO bioavailability. However, it is unclear which of several NO biomarkers (NO3-, NO2-, S-nitrosothiols (RSNOs)) in plasma, whole blood (WB), red blood cells (RBC) and skeletal muscle correlate with the physiological effects of acute and chronic dietary NO3- supplementation. Using a randomized, double-blind, crossover design, 12 participants (9 males) consumed NO3--rich beetroot juice (BR) (∼12.8 mmol NO3-) and NO3--depleted placebo beetroot juice (PL) acutely and then chronically (for two weeks). Biological samples were collected, resting BP was assessed, and 10 maximal voluntary isometric contractions of the knee extensors were performed at 2.5-3.5 h following supplement ingestion on day 1 and day 14. Diastolic BP was significantly lower in BR (-2 ± 3 mmHg, P = 0.03) compared to PL following acute supplementation, while the absolute rate of torque development (RTD) was significantly greater in BR at 0-30 ms (39 ± 57 N m s-1, P = 0.03) and 0-50 ms (79 ± 99 N m s-1, P = 0.02) compared to PL following two weeks supplementation. Greater WB [RSNOs] rather than plasma [NO2-] was correlated with lower diastolic BP (r = -0.68, P = 0.02) in BR compared to PL following acute supplementation, while greater skeletal muscle [NO3-] was correlated with greater RTD at 0-30 ms (r = 0.64, P=0.03) in BR compared to PL following chronic supplementation. We conclude that [RSNOs] in blood, and [NO3-] in skeletal muscle, are relevant biomarkers of NO bioavailability which are related to the reduction of BP and the enhanced muscle contractile function following dietary NO3- ingestion in humans.


Assuntos
Biomarcadores , Pressão Sanguínea , Estudos Cross-Over , Suplementos Nutricionais , Nitratos , Óxido Nítrico , Humanos , Nitratos/administração & dosagem , Nitratos/farmacologia , Nitratos/sangue , Masculino , Biomarcadores/sangue , Feminino , Óxido Nítrico/metabolismo , Óxido Nítrico/sangue , Adulto , Método Duplo-Cego , Pressão Sanguínea/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Adulto Jovem , Beta vulgaris/química , Nitritos/sangue
2.
J Nutr ; 153(6): 1680-1695, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822394

RESUMO

BACKGROUND: It remains unclear whether non-animal-derived dietary protein sources (and therefore vegan diets) can support resistance training-induced skeletal muscle remodeling to the same extent as animal-derived protein sources. METHODS: In Phase 1, 16 healthy young adults (m = 8, f = 8; age: 23 ± 1 y; BMI: 23 ± 1 kg/m2) completed a 3-d dietary intervention (high protein, 1.8 g·kg bm-1·d-1) where protein was derived from omnivorous (OMNI1; n = 8) or exclusively non-animal (VEG1; n = 8) sources, alongside daily unilateral leg resistance exercise. Resting and exercised daily myofibrillar protein synthesis (MyoPS) rates were assessed using deuterium oxide. In Phase 2, 22 healthy young adults (m = 11, f = 11; age: 24 ± 1 y; BMI: 23 ± 0 kg/m2) completed a 10 wk, high-volume (5 d/wk), progressive resistance exercise program while consuming an omnivorous (OMNI2; n = 12) or non-animal-derived (VEG2; n = 10) high-protein diet (∼2 g·kg bm-1·d-1). Muscle fiber cross-sectional area (CSA), whole-body lean mass (via DXA), thigh muscle volume (via MRI), muscle strength, and muscle function were determined pre, after 2 and 5 wk, and postintervention. OBJECTIVES: To investigate whether a high-protein, mycoprotein-rich, non-animal-derived diet can support resistance training-induced skeletal muscle remodeling to the same extent as an isonitrogenous omnivorous diet. RESULTS: Daily MyoPS rates were ∼12% higher in the exercised than in the rested leg (2.46 ± 0.27%·d-1 compared with 2.20 ± 0.33%·d-1 and 2.62 ± 0.56%·d-1 compared with 2.36 ± 0.53%·d-1 in OMNI1 and VEG1, respectively; P < 0.001) and not different between groups (P > 0.05). Resistance training increased lean mass in both groups by a similar magnitude (OMNI2 2.6 ± 1.1 kg, VEG2 3.1 ± 2.5 kg; P > 0.05). Likewise, training comparably increased thigh muscle volume (OMNI2 8.3 ± 3.6%, VEG2 8.3 ± 4.1%; P > 0.05), and muscle fiber CSA (OMNI2 33 ± 24%, VEG2 32 ± 48%; P > 0.05). Both groups increased strength (1 repetition maximum) of multiple muscle groups, to comparable degrees. CONCLUSIONS: Omnivorous and vegan diets can support comparable rested and exercised daily MyoPS rates in healthy young adults consuming a high-protein diet. This translates to similar skeletal muscle adaptive responses during prolonged high-volume resistance training, irrespective of dietary protein provenance. This trial was registered at clinicaltrials.gov as NCT03572127.


Assuntos
Dieta Rica em Proteínas , Treinamento Resistido , Humanos , Dieta Vegana , Proteínas Alimentares/metabolismo , Hipertrofia/metabolismo , Força Muscular , Músculo Esquelético/metabolismo , Veganos
3.
Br J Nutr ; 130(1): 20-32, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36172885

RESUMO

Ingestion of mycoprotein stimulates skeletal muscle protein synthesis (MPS) rates to a greater extent than concentrated milk protein when matched for leucine content, potentially attributable to the wholefood nature of mycoprotein. We hypothesised that bolus ingestion of mycoprotein as part of its wholefood matrix would stimulate MPS rates to a greater extent compared with a leucine-matched bolus of protein concentrated from mycoprotein. Twenty-four healthy young (age, 21 ± 2 years; BMI, 24 ± 3 kg.m2) males received primed, continuous infusions of L-[ring-2H5]phenylalanine and completed a bout of unilateral resistance leg exercise before ingesting either 70 g mycoprotein (MYC; 31·4 g protein, 2·5 g leucine; n 12) or 38·2 g of a protein concentrate obtained from mycoprotein (PCM; 28·0 g protein, 2·5 g leucine; n 12). Blood and muscle samples (vastus lateralis) were taken pre- and (4 h) post-exercise/protein ingestion to assess postabsorptive and postprandial myofibrillar protein fractional synthetic rates (FSR) in resting and exercised muscle. Protein ingestion increased plasma essential amino acid and leucine concentrations (P < 0·0001), but more rapidly (both 60 v. 90 min; P < 0·0001) and to greater magnitudes (1367 v. 1346 µmol·l-1 and 298 v. 283 µmol·l-1, respectively; P < 0·0001) in PCM compared with MYC. Protein ingestion increased myofibrillar FSR (P < 0·0001) in both rested (MYC, Δ0·031 ± 0·007 %·h-1 and PCM, Δ0·020 ± 0·008 %·h-1) and exercised (MYC, Δ0·057 ± 0·011 %·h-1 and PCM, Δ0·058 ± 0·012 %·h-1) muscle, with no differences between conditions (P > 0·05). Mycoprotein ingestion results in equivalent postprandial stimulation of resting and post-exercise myofibrillar protein synthesis rates irrespective of whether it is consumed within or without its wholefood matrix.


Assuntos
Proteínas Alimentares , Proteínas Musculares , Masculino , Humanos , Adulto Jovem , Adulto , Leucina , Proteínas Alimentares/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ingestão de Alimentos , Período Pós-Prandial
4.
Am J Physiol Endocrinol Metab ; 322(3): E231-E249, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037473

RESUMO

Factors underpinning the time-course of resistance-type exercise training (RET) adaptations are not fully understood. This study hypothesized that consuming a twice-daily protein-polyphenol beverage (PPB; n = 15; age, 24 ± 1 yr; BMI, 22.3 ± 0.7 kg·m-2) previously shown to accelerate recovery from muscle damage and increase daily myofibrillar protein synthesis (MyoPS) rates would accelerate early (10 sessions) improvements in muscle function and potentiate quadriceps volume and muscle fiber cross-sectional area (fCSA) following 30 unilateral RET sessions in healthy, recreationally active, adults. Versus isocaloric placebo (PLA; n = 14; age, 25 ± 2 yr; BMI, 23.9 ± 1.0 kg·m-2), PPB increased 48 h MyoPS rates after the first RET session measured using deuterated water (2.01 ± 0.15 vs. 1.51 ± 0.16%·day-1, respectively; P < 0.05). In addition, PPB increased isokinetic muscle function over 10 sessions of training relative to the untrained control leg (%U) from 99.9 ± 1.8 pretraining to 107.2 ± 2.4%U at session 10 (vs. 102.6 ± 3.9 to 100.8 ± 2.4%U at session 10 in PLA; interaction P < 0.05). Pre to posttraining, PPB increased type II fCSA (PLA: 120.8 ± 8.2 to 109.5 ± 8.6%U; PPB: 92.8 ± 6.2 to 108.4 ± 9.7%U; interaction P < 0.05), but the gain in quadriceps muscle volume was similar between groups. Similarly, PPB did not further increase peak isometric torque, muscle function, or MyoPS measured posttraining. This suggests that although PPB increases MyoPS and early adaptation, it may not influence longer term adaptations to unilateral RET.NEW & NOTEWORTHY Using a unilateral model of resistance training, we show for the first time that a protein-polyphenol beverage increases initial rates of myofibrillar protein synthesis and promotes early functional improvements. Following a prolonged period of training, this strategy also increases type II fiber hypertrophy and causes large individual variation in gains in quadricep muscle cross-sectional area.


Assuntos
Doenças Musculares , Treinamento Resistido , Adulto , Ingestão de Alimentos , Humanos , Proteínas Musculares/metabolismo , Força Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Poliésteres/metabolismo , Polifenóis , Adulto Jovem
5.
J Physiol ; 599(23): 5203-5214, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34587650

RESUMO

Dietary nitrate supplementation has been shown to reduce pulmonary O2 uptake during submaximal exercise and enhance exercise performance. However, the effects of nitrate supplementation on local metabolic and haemodynamic regulation in contracting human skeletal muscle remain unclear. To address this, eight healthy young male sedentary subjects were assigned in a randomized, double-blind, crossover design to receive nitrate-rich beetroot juice (NO3, 9 mmol) and placebo (PLA) 2.5 h prior to the completion of a double-step knee-extensor exercise protocol that included a transition from unloaded to moderate-intensity exercise (MOD) followed immediately by a transition to intense exercise (HIGH). Compared with PLA, NO3 increased plasma levels of nitrate and nitrite. During MOD, leg V̇O2 and leg blood flow (LBF) were reduced to a similar extent (∼9%-15%) in NO3. During HIGH, leg V̇O2 was reduced by ∼6%-10% and LBF by ∼5%-9% (did not reach significance) in NO3. Leg V̇O2 kinetics was markedly faster in the transition from passive to MOD compared with the transition from MOD to HIGH both in NO3 and PLA with no difference between PLA and NO3. In NO3, a reduction in nitrate and nitrite concentration was detected between arterial and venous samples. No difference in the time to exhaustion was observed between conditions. In conclusion, elevation of plasma nitrate and nitrate reduces leg skeletal muscle V̇O2 and blood flow during exercise. However, nitrate supplementation does not enhance muscle V̇O2 kinetics during exercise, nor does it improve time to exhaustion when exercising with a small muscle mass. KEY POINTS: Dietary nitrate supplementation has been shown to reduce systemic O2 uptake during exercise and improve exercise performance. The effects of nitrate supplementation on local metabolism and blood flow regulation in contracting human skeletal muscle remain unclear. By using leg exercise engaging a small muscle mass, we show that O2 uptake and blood flow are similarly reduced in contracting skeletal muscle of humans during exercise. Despite slower V̇O2 kinetics in the transition from moderate to intense exercise, no effects of nitrate supplementation were observed for V̇O2 kinetics and time to exhaustion. Nitrate and nitrite concentrations are reduced across the exercising leg, suggesting that these ions are extracted from the arterial blood by contracting skeletal muscle.


Assuntos
Beta vulgaris , Nitratos , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Ingestão de Alimentos , Hemodinâmica , Humanos , Masculino , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Consumo de Oxigênio
6.
Nitric Oxide ; 74: 39-46, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360600

RESUMO

A diet rich in vegetables is known to provide cardioprotection. However, it is unclear how the consumption of different vegetables might interact to influence vascular health. This study tested the hypothesis that nitrate-rich vegetable consumption would lower systolic blood pressure but that this effect would be abolished when nitrate-rich and thiocyanate-rich vegetables are co-ingested. On four separate occasions, and in a randomized cross-over design, eleven healthy males reported to the laboratory and consumed a 750 mL vegetable smoothie that was either: low in nitrate (∼0.3 mmol) and thiocyanate (∼5 µmol), low in nitrate and high in thiocyanate (∼72 µmol), high in nitrate (∼4 mmol) and low in thiocyanate and high in nitrate and thiocyanate. Blood pressure as well as plasma and salivary [thiocyanate], [nitrate] and [nitrite] were assessed before and 3 h after smoothie consumption. Plasma [nitrate] and [nitrite] and salivary [nitrate] were not different after consuming the two high-nitrate smoothies, but salivary [nitrite] was higher after consuming the high-nitrate low-thiocyanate smoothie (1183 ±â€¯625 µM) compared to the high-nitrate high-thiocyanate smoothie (941 ±â€¯532 µM; P < .001). Systolic blood pressure was only lowered after consuming the high-nitrate low-thiocyanate smoothie (-3 ±â€¯5 mmHg; P < .05). The acute consumption of vegetables high in nitrate and low in thiocyanate lowered systolic blood pressure. However, when the same dose of nitrate-rich vegetables was co-ingested with thiocyanate-rich vegetables the increase in salivary [nitrite] was smaller and systolic blood pressure was not lowered. These findings might have implications for optimising dietary guidelines aimed at improving cardiovascular health.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Nitratos/farmacologia , Tiocianatos/farmacologia , Verduras/química , Adulto , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Masculino , Nitratos/sangue , Nitratos/metabolismo , Tiocianatos/sangue , Tiocianatos/metabolismo , Verduras/metabolismo , Adulto Jovem
7.
Nitric Oxide ; 63: 13-20, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28024935

RESUMO

Uptake of inorganic nitrate (NO3-) into the salivary circulation is a rate-limiting step for dietary NO3- metabolism in mammals. It has been suggested that salivary NO3- uptake occurs in competition with inorganic iodide (I-). Therefore, this study tested the hypothesis that I- supplementation would interfere with NO3- metabolism and blunt blood pressure reductions after dietary NO3- supplementation. Nine healthy adults (4 male, mean ± SD, age 20 ± 1 yr) reported to the laboratory for initial baseline assessment (control) and following six day supplementation periods with 140 mL·day-1 NO3--rich beetroot juice (8.4 mmol NO3-·day-1) and 198 mg potassium gluconate·day-1 (nitrate), and 140 mL·day-1 NO3--rich beetroot juice and 450 µg potassium iodide·day-1 (nitrate + iodide) in a randomized, cross-over experiment. Salivary [I-] was higher in the nitrate + iodide compared to the control and NIT trials (P < 0.05). Salivary and plasma [NO3-] and [NO2-] were higher in the nitrate and nitrate + iodide trials compared to the control trial (P < 0.05). Plasma [NO3-] was higher (474 ± 127 vs. 438 ± 117 µM) and the salivary-plasma [NO3-] ratio was lower (14 ± 6 vs. 20 ± 6 µM), indicative of a lower salivary NO3- uptake, in the nitrate + iodide trial compared to the nitrate trial (P < 0.05). Plasma and salivary [NO2-] were not different between the nitrate and nitrate + iodide trials (P > 0.05). Systolic blood pressure was lower than control (112 ± 13 mmHg) in the nitrate (106 ± 13 mmHg) and nitrate + iodide (106 ± 11 mmHg) trials (P < 0.05), with no differences between the nitrate and nitrate + iodide trials (P > 0.05). In conclusion, co-ingesting NO3- and I- perturbed salivary NO3- uptake, but the increase in salivary and plasma [NO2-] and the lowering of blood pressure were similar compared to NO3- ingestion alone. Therefore, increased dietary I- intake, which is recommended in several countries worldwide as an initiative to offset hypothyroidism, does not appear to compromise the blood pressure reduction afforded by increased dietary NO3- intake.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Suplementos Nutricionais , Iodetos/metabolismo , Nitratos/metabolismo , Pressão Arterial/efeitos dos fármacos , Beta vulgaris , Feminino , Sucos de Frutas e Vegetais , Humanos , Iodetos/administração & dosagem , Masculino , Nitratos/administração & dosagem , Nitratos/sangue , Nitritos/sangue , Nitritos/metabolismo , Saliva/metabolismo , Adulto Jovem
8.
J Physiol ; 594(15): 4407-23, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26940850

RESUMO

KEY POINTS: The power-asymptote (critical power; CP) of the hyperbolic power-time relationship for high-intensity exercise defines a threshold between steady-state and non-steady-state exercise intensities and the curvature constant (W') indicates a fixed capacity for work >CP that is related to a loss of muscular efficiency. The present study reports novel evidence on the muscle metabolic underpinnings of CP and W' during whole-body exercise and their relationships to muscle fibre type. We show that the W' is not correlated with muscle fibre type distribution and that it represents an elevated energy contribution from both oxidative and glycolytic/glycogenolytic metabolism. We show that there is a positive correlation between CP and highly oxidative type I muscle fibres and that muscle metabolic steady-state is attainable CP. Our findings indicate a mechanistic link between the bioenergetic characteristics of muscle fibre types and the power-time relationship for high-intensity exercise. ABSTRACT: We hypothesized that: (1) the critical power (CP) will represent a boundary separating steady-state from non-steady-state muscle metabolic responses during whole-body exercise and (2) that the CP and the curvature constant (W') of the power-time relationship for high-intensity exercise will be correlated with type I and type IIx muscle fibre distributions, respectively. Four men and four women performed a 3 min all-out cycling test for the estimation of CP and constant work rate (CWR) tests slightly >CP until exhaustion (Tlim ), slightly CP Tlim isotime to test the first hypothesis. Eleven men performed 3 min all-out tests and donated muscle biopsies to test the second hypothesis. Below CP, muscle [PCr] [42.6 ± 7.1 vs. 49.4 ± 6.9 mmol (kg d.w.)(-1) ], [La(-) ] [34.8 ± 12.6 vs. 35.5 ± 13.2 mmol (kg d.w.)(-1) ] and pH (7.11 ± 0.08 vs. 7.10 ± 0.11) remained stable between ∼12 and 24 min (P > 0.05 for all), whereas these variables changed with time >CP such that they were greater [[La(-) ] 95.6 ± 14.1 mmol (kg d.w.)(-1) ] and lower [[PCr] 24.2 ± 3.9 mmol (kg d.w.)(-1) ; pH 6.84 ± 0.06] (P < 0.05) at Tlim (740 ± 186 s) than during the

Assuntos
Ciclismo/fisiologia , Exercício Físico/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Adulto , Metabolismo Energético , Fadiga/fisiopatologia , Feminino , Humanos , Masculino , Adulto Jovem
9.
Nitric Oxide ; 59: 10-20, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27378312

RESUMO

This study tested the hypothesis that watermelon juice supplementation would improve nitric oxide bioavailability and exercise performance. Eight healthy recreationally-active adult males reported to the laboratory on two occasions for initial testing without dietary supplementation (control condition). Thereafter, participants were randomly assigned, in a cross-over experimental design, to receive 16 days of supplementation with 300 mL·day(-1) of a watermelon juice concentrate, which provided ∼3.4 g l-citrulline·day(-1) and an apple juice concentrate as a placebo. Participants reported to the laboratory on days 14 and 16 of supplementation to assess the effects of the interventions on blood pressure, plasma [l-citrulline], plasma [l-arginine], plasma [nitrite], muscle oxygenation and time-to-exhaustion during severe-intensity exercise. Compared to control and placebo, plasma [l-citrulline] (29 ± 4, 22 ± 6 and 101 ± 23 µM), [l-arginine] (74 ± 9, 67 ± 13 and 116 ± 9 µM) and [nitrite] (102 ± 29, 106 ± 21 and 201 ± 106 nM) were higher after watermelon juice supplementation (P < 0.01). However, systolic blood pressure was higher in the watermelon juice (130 ± 11) and placebo (131 ± 9) conditions compared to the control condition (124 ± 8 mmHg; P < 0.05). The skeletal muscle oxygenation index during moderate-intensity exercise was greater in the watermelon juice condition than the placebo and control conditions (P < 0.05), but time-to-exhaustion during the severe-intensity exercise test (control: 478 ± 80, placebo: 539 ± 108, watermelon juice: 550 ± 143 s) was not significantly different between conditions (P < 0.05). In conclusion, while watermelon juice supplementation increased baseline plasma [nitrite] and improved muscle oxygenation during moderate-intensity exercise, it increased resting blood pressure and did not improve time-to-exhaustion during severe-intensity exercise. These findings do not support the use of watermelon juice supplementation as a nutritional intervention to lower blood pressure or improve endurance exercise performance in healthy adults.


Assuntos
Citrullus , Suplementos Nutricionais , Sucos de Frutas e Vegetais , Óxido Nítrico/análise , Resistência Física , Arginina/sangue , Pressão Arterial , Glicemia/análise , Citrulina/sangue , Frequência Cardíaca , Humanos , Ácido Láctico/sangue , Masculino , Malus , Nitritos/sangue , Consumo de Oxigênio , Troca Gasosa Pulmonar , Adulto Jovem
10.
Nitric Oxide ; 61: 29-37, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27744007

RESUMO

Dietary supplementation with inorganic nitrate (NO3-) has been reported to improve cardiovascular health indices in healthy adults. Cigarette smoking increases circulating thiocyanate (SCN-), which has been suggested to competitively inhibit salivary nitrate (NO3-) uptake, a rate-limiting step in dietary NO3- metabolism. Therefore, this study tested the hypothesis that dietary NO3- supplementation would be less effective at increasing the circulating plasma nitrite concentration ([NO2-]) and lowering blood pressure in smokers (S) compared to non-smokers (NS). Nine healthy smokers and eight healthy non-smoking controls reported to the laboratory at baseline (CON) and following six day supplementation periods with 140 mL day-1 NO3--rich (8.4 mmol NO3- day-1; NIT) and NO3--depleted (0.08 mmol NO3- day-1; PLA) beetroot juice in a cross-over experiment. Plasma and salivary [SCN-] were elevated in smokers compared to non-smokers in all experimental conditions (P < 0.05). Plasma and salivary [NO3-] and [NO2-] were elevated in the NIT condition compared to CON and PLA conditions in smokers and non-smokers (P < 0.05). However, the change in salivary [NO3-] (S: 3.5 ± 2.1 vs. NS: 7.5 ± 4.4 mM), plasma [NO3-] (S: 484 ± 198 vs. NS: 802 ± 199 µM) and plasma [NO2-] (S: 218 ± 128 vs. NS: 559 ± 419 nM) between the CON and NIT conditions was lower in the smokers compared to the non-smokers (P < 0.05). Salivary [NO2-] increased above CON to a similar extent with NIT in smokers and non-smokers (P > 0.05). Systolic blood pressure was lowered compared to PLA with NIT in non-smokers (P < 0.05), but not smokers (P > 0.05). These findings suggest that dietary NO3- metabolism is compromised in smokers leading to an attenuated blood pressure reduction compared to non-smokers after NO3- supplementation. These observations may provide novel insights into the cardiovascular risks associated with cigarette smoking and suggest that this population may be less likely to benefit from improved cardiovascular health if they increase dietary NO3- intake.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Nitratos/uso terapêutico , Fumar/metabolismo , Tiocianatos/análise , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Nitratos/administração & dosagem , Nitratos/farmacologia , Saliva/química , Saliva/efeitos dos fármacos , Adulto Jovem
11.
Public Health Nutr ; 18(14): 2669-78, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25683748

RESUMO

OBJECTIVE: Epidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women. DESIGN: A randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured. SETTING: University of Exeter, UK. SUBJECTS: Nineteen healthy women (mean age 20 (sd 2) years; mean BMI 22·5 (sd 3·8) kg/m2). RESULTS: The HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd 5·6) µmol/l; after HN diet: mean 61·0 (sd 44·1) µmol/l, P<0·05) and plasma nitrite concentration (before HN diet: mean 98 (sd 91) nmol/l; after HN diet: mean 185 (sd 34) nmol/l, P<0·05). No significant change in plasma nitrate or nitrite concentration was observed after the Control diet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd 9) mmHg; after HN diet: mean 103 (sd 6) mmHg, P<0·05). No significant change in systolic BP was observed after the Control diet (before Control diet: mean 106 (sd 8) mmHg; after Control diet: mean 106 (sd 8) mmHg). CONCLUSIONS: Consumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Dieta , Comportamento Alimentar , Hipertensão/sangue , Nitratos/farmacologia , Nitritos/sangue , Verduras/química , Adolescente , Adulto , Estudos Cross-Over , Feminino , Humanos , Hipertensão/dietoterapia , Hipertensão/prevenção & controle , Nitratos/sangue , Nitratos/uso terapêutico , Valores de Referência , Adulto Jovem
12.
Pflugers Arch ; 465(4): 517-28, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354414

RESUMO

Dietary nitrate supplementation, which enhances nitric oxide (NO) bioavailability, has previously been shown to contribute to improved exercise performance by reducing both oxygen cost and energy expenditure. In contrast, previous studies have indicated that NO can lower force production in vitro. To examine the role of dietary nitrates in regulating force generation under normal physiological conditions, we undertook an extended nitrate supplementation regime and determined force output and energy cost with a repeated isometric maximum voluntary contraction (MVC) protocol. In a double-blind, randomized, crossover design, eight participants received 0.5 l/day of nitrate-rich (BR) or nitrate-depleted (PL) beetroot juice for 15 days and completed an exercise protocol consisting of 50 MVCs at 2.5 h, 5 days and 15 days after the beginning of the supplementation period. No significant reduction in force output was determined for BR relative to PL for the peak contraction, the mean or the end force, and no significant time effect was found over the course of the supplementation period. There was a reduction in the mean PCr cost of exercise averaged over the BR supplementation trials, but this did not reach statistical significance for end exercise (BR 15.10 ± 4.14 mM, PL 17.10 ± 5.34 mM, P = 0.06) or the mean throughout the protocol (BR 15.96 ± 4.14 mM, PL 17.79 ± 4.51 mM, P = 0.06). However, a significant reduction in PCr cost per unit force output was found for BR at end exercise (P = 0.04). These results indicate that, under normal physiological conditions, increased NO bioavailability is not associated with a reduction of force-generating capability in human skeletal muscle and confirm that nitrate supplementation reduces the PCr cost of force production.


Assuntos
Suplementos Nutricionais , Contração Isométrica/efeitos dos fármacos , Músculo Esquelético/metabolismo , Nitratos/farmacologia , Adulto , Exercício Físico , Humanos , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/fisiologia , Nitratos/sangue
13.
Am J Physiol Regul Integr Comp Physiol ; 305(12): R1441-50, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24089377

RESUMO

Recent research has suggested that dietary nitrate (NO3(-)) supplementation might alter the physiological responses to exercise via specific effects on type II muscle. Severe-intensity exercise initiated from an elevated metabolic rate would be expected to enhance the proportional activation of higher-order (type II) muscle fibers. The purpose of this study was, therefore, to test the hypothesis that, compared with placebo (PL), NO3(-)-rich beetroot juice (BR) supplementation would speed the phase II VO2 kinetics (τ(p)) and enhance exercise tolerance during severe-intensity exercise initiated from a baseline of moderate-intensity exercise. Nine healthy, physically active subjects were assigned in a randomized, double-blind, crossover design to receive BR (140 ml/day, containing ~8 mmol of NO3(-)) and PL (140 ml/day, containing ~0.003 mmol of NO3(-)) for 6 days. On days 4, 5, and 6 of the supplementation periods, subjects completed a double-step exercise protocol that included transitions from unloaded to moderate-intensity exercise (U→M) followed immediately by moderate to severe-intensity exercise (M→S). Compared with PL, BR elevated resting plasma nitrite concentration (PL: 65 ± 32 vs. BR: 348 ± 170 nM, P < 0.01) and reduced the VO2 τ(p) in M→S (PL: 46 ± 13 vs. BR: 36 ± 10 s, P < 0.05) but not U→M (PL: 25 ± 4 vs. BR: 27 ± 6 s, P > 0.05). During M→S exercise, the faster VO2 kinetics coincided with faster near-infrared spectroscopy-derived muscle [deoxyhemoglobin] kinetics (τ; PL: 20 ± 9 vs. BR: 10 ± 3 s, P < 0.05) and a 22% greater time-to-task failure (PL: 521 ± 158 vs. BR: 635 ± 258 s, P < 0.05). Dietary supplementation with NO3(-)-rich BR juice speeds VO2 kinetics and enhances exercise tolerance during severe-intensity exercise when initiated from an elevated metabolic rate.


Assuntos
Beta vulgaris , Metabolismo Energético/efeitos dos fármacos , Tolerância ao Exercício/efeitos dos fármacos , Nitratos/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas , Adulto , Metabolismo Basal/efeitos dos fármacos , Metabolismo Basal/fisiologia , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Metabolismo Energético/fisiologia , Tolerância ao Exercício/fisiologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Humanos , Lactatos/sangue , Masculino , Nitritos/sangue , Consumo de Oxigênio/fisiologia , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia
14.
Am J Physiol Regul Integr Comp Physiol ; 304(2): R73-83, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23174856

RESUMO

Dietary nitrate (NO(3)(-)) supplementation has been shown to reduce resting blood pressure and alter the physiological response to exercise in young adults. We investigated whether these effects might also be evident in older adults. In a double-blind, randomized, crossover study, 12 healthy, older (60-70 yr) adults supplemented their diet for 3 days with either nitrate-rich concentrated beetroot juice (BR; 2 × 70 ml/day, ∼9.6 mmol/day NO(3)(-)) or a nitrate-depleted beetroot juice placebo (PL; 2 × 70 ml/day, ∼0.01 mmol/day NO(3)(-)). Before and after the intervention periods, resting blood pressure and plasma [nitrite] were measured, and subjects completed a battery of physiological and cognitive tests. Nitrate supplementation significantly increased plasma [nitrite] and reduced resting systolic (BR: 115 ± 9 vs. PL: 120 ± 6 mmHg; P < 0.05) and diastolic (BR: 70 ± 5 vs. PL: 73 ± 5 mmHg; P < 0.05) blood pressure. Nitrate supplementation resulted in a speeding of the Vo(2) mean response time (BR: 25 ± 7 vs. PL: 28 ± 7 s; P < 0.05) in the transition from standing rest to treadmill walking, although in contrast to our hypothesis, the O(2) cost of exercise remained unchanged. Functional capacity (6-min walk test), the muscle metabolic response to low-intensity exercise, brain metabolite concentrations, and cognitive function were also not altered. Dietary nitrate supplementation reduced resting blood pressure and improved Vo(2) kinetics during treadmill walking in healthy older adults but did not improve walking or cognitive performance. These results may have implications for the enhancement of cardiovascular health in older age.


Assuntos
Beta vulgaris , Pressão Sanguínea/efeitos dos fármacos , Cognição/efeitos dos fármacos , Dieta , Suplementos Nutricionais , Músculo Esquelético/efeitos dos fármacos , Nitratos/administração & dosagem , Consumo de Oxigênio/efeitos dos fármacos , Fatores Etários , Idoso , Envelhecimento , Bebidas , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Inglaterra , Teste de Esforço , Tolerância ao Exercício/efeitos dos fármacos , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Testes Neuropsicológicos , Nitratos/sangue , Fosfocreatina/metabolismo , Raízes de Plantas , Caminhada
15.
Eur J Appl Physiol ; 113(7): 1805-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23423302

RESUMO

The extent to which dietary supplementation with the nitric oxide synthase (NOS) substrate, L-arginine (ARG), impacts on NO production and NO-mediated physiological responses is controversial. This randomised, double blinded, cross-over study investigated the effects of acute ARG supplementation on NO biomarkers, O2 cost of exercise and exercise tolerance in humans. In one experiment, 15 subjects completed moderate- and severe-intensity running bouts after acute supplementation with 6 g ARG or placebo (PLA). In another experiment, eight subjects completed moderate- and severe-intensity cycling bouts after acute supplementation with 6 g ARG plus 25 g of carbohydrate (ARG + CHO) or an energy-matched dose of carbohydrate alone (CHO). The plasma nitrite concentration was not different after ARG (Pre: 204 ± 79; Post: 241 ± 114 nM; P > 0.05) or ARG + CHO consumption (Pre: 304 ± 57; Post: 335 ± 116 nM; P > 0.05). During moderate-intensity exercise, the steady-state pulmonary VO2 was not different, relative to the respective placebo conditions, after ARG (PLA: 2,407 ± 318, ARG: 2,422 ± 333 mL min(-1)) or ARG + CHO (CHO: 1,695 ± 304, ARG + CHO: 1,712 ± 312 mL min(-1)) ingestion (P > 0.05). The tolerable duration of severe exercise was also not significantly different (P > 0.05) after ingesting ARG (PLA: 551 ± 140, ARG: 552 ± 150 s) or ARG + CHO (CHO: 457 ± 182, ARG + CHO: 441 ± 221 s). In conclusion, acute dietary supplementation with ARG or ARG + CHO did not alter biomarkers of NO synthesis, O2 cost of exercise or exercise tolerance in healthy subjects.


Assuntos
Arginina/farmacologia , Tolerância ao Exercício/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Adulto , Carboidratos/farmacologia , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Masculino , Nitritos/sangue , Corrida
16.
Eur J Appl Physiol ; 112(12): 4127-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22526247

RESUMO

Dietary nitrate supplementation has been reported to improve short distance time trial (TT) performance by 1-3 % in club-level cyclists. It is not known if these ergogenic effects persist in longer endurance events or if dietary nitrate supplementation can enhance performance to the same extent in better trained individuals. Eight well-trained male cyclists performed two laboratory-based 50 mile TTs: (1) 2.5 h after consuming 0.5 L of nitrate-rich beetroot juice (BR) and (2) 2.5 h after consuming 0.5 L of nitrate-depleted BR as a placebo (PL). BR significantly elevated plasma [NO(2) (-)] (BR: 472 ± 96 vs. PL: 379 ± 94 nM; P < 0.05) and reduced completion time for the 50 mile TT by 0.8 % (BR: 136.7 ± 5.6 vs. PL: 137.9 ± 6.4 min), which was not statistically significant (P > 0.05). There was a significant correlation between the increased post-beverage plasma [NO(2) (-)] with BR and the reduction in TT completion time (r = -0.83, P = 0.01). Power output (PO) was not different between the conditions at any point (P > 0.05) but oxygen uptake ([Formula: see text]O(2)) tended to be lower in BR (P = 0.06), resulting in a significantly greater PO/[Formula: see text]O(2) ratio (BR: 67.4 ± 5.5 vs. PL: 65.3 ± 4.8 W L min(-1); P < 0.05). In conclusion, acute dietary supplementation with beetroot juice did not significantly improve 50 mile TT performance in well-trained cyclists. It is possible that the better training status of the cyclists in this study might reduce the physiological and performance response to NO(3) (-) supplementation compared with the moderately trained cyclists tested in earlier studies.


Assuntos
Suplementos Nutricionais , Nitratos/farmacologia , Resistência Física/efeitos dos fármacos , Adulto , Beta vulgaris/química , Bebidas , Ciclismo , Estudos de Casos e Controles , Humanos , Masculino , Nitratos/sangue , Consumo de Oxigênio , Resistência Física/fisiologia
17.
Redox Biol ; 41: 101933, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721836

RESUMO

Many oral bacteria reduce inorganic nitrate, a natural part of a vegetable-rich diet, into nitrite that acts as a precursor to nitric oxide, a regulator of vascular tone and neurotransmission. Aging is hallmarked by reduced nitric oxide production with associated detriments to cardiovascular and cognitive function. This study applied a systems-level bacterial co-occurrence network analysis across 10-day dietary nitrate and placebo interventions to test the stability of relationships between physiological and cognitive traits and clusters of co-occurring oral bacteria in older people. Relative abundances of Proteobacteria increased, while Bacteroidetes, Firmicutes and Fusobacteria decreased after nitrate supplementation. Two distinct microbiome modules of co-occurring bacteria, that were sensitive to nitrate supplementation, showed stable relationships with cardiovascular (Rothia-Streptococcus) and cognitive (Neisseria-Haemophilus) indices of health across both dietary conditions. A microbiome module (Prevotella-Veillonella) that has been associated with pro-inflammatory metabolism was diminished after nitrate supplementation, including a decrease in relative abundance of pathogenic Clostridium difficile. These nitrate-sensitive oral microbiome modules are proposed as potential pre- and probiotic targets to ameliorate age-induced impairments in cardiovascular and cognitive health.


Assuntos
Microbiota , Nitratos , Idoso , Cognição , Humanos , Óxido Nítrico , Nitritos , Óxidos de Nitrogênio
18.
Nutrients ; 13(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34444928

RESUMO

Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes' economy as well as the performance effects in elite groups.


Assuntos
Beta vulgaris , Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Sucos de Frutas e Vegetais , Caminhada/fisiologia , Adulto , Atletas , Humanos , Masculino , Oxirredução , Consumo de Oxigênio
19.
Am J Physiol Regul Integr Comp Physiol ; 299(4): R1121-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20702806

RESUMO

Dietary nitrate (NO(3)(-)) supplementation with beetroot juice (BR) over 4-6 days has been shown to reduce the O(2) cost of submaximal exercise and to improve exercise tolerance. However, it is not known whether shorter (or longer) periods of supplementation have similar (or greater) effects. We therefore investigated the effects of acute and chronic NO(3)(-) supplementation on resting blood pressure (BP) and the physiological responses to moderate-intensity exercise and ramp incremental cycle exercise in eight healthy subjects. Following baseline tests, the subjects were assigned in a balanced crossover design to receive BR (0.5 l/day; 5.2 mmol of NO(3)(-)/day) and placebo (PL; 0.5 l/day low-calorie juice cordial) treatments. The exercise protocol (two moderate-intensity step tests followed by a ramp test) was repeated 2.5 h following first ingestion (0.5 liter) and after 5 and 15 days of BR and PL. Plasma nitrite concentration (baseline: 454 ± 81 nM) was significantly elevated (+39% at 2.5 h postingestion; +25% at 5 days; +46% at 15 days; P < 0.05) and systolic and diastolic BP (baseline: 127 ± 6 and 72 ± 5 mmHg, respectively) were reduced by ∼4% throughout the BR supplementation period (P < 0.05). Compared with PL, the steady-state Vo(2) during moderate exercise was reduced by ∼4% after 2.5 h and remained similarly reduced after 5 and 15 days of BR (P < 0.05). The ramp test peak power and the work rate at the gas exchange threshold (baseline: 322 ± 67 W and 89 ± 15 W, respectively) were elevated after 15 days of BR (331 ± 68 W and 105 ± 28 W; P < 0.05) but not PL (323 ± 68 W and 84 ± 18 W). These results indicate that dietary NO(3)(-) supplementation acutely reduces BP and the O(2) cost of submaximal exercise and that these effects are maintained for at least 15 days if supplementation is continued.


Assuntos
Beta vulgaris/química , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Exercício Físico/fisiologia , Nitratos/farmacologia , Aptidão Física/fisiologia , Adulto , Limiar Anaeróbio/efeitos dos fármacos , Limiar Anaeróbio/fisiologia , Estudos Cross-Over , Suplementos Nutricionais , Teste de Esforço , Feminino , Humanos , Ácido Láctico/sangue , Masculino , Óxido Nítrico/sangue , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Troca Gasosa Pulmonar/fisiologia , Mecânica Respiratória/efeitos dos fármacos , Mecânica Respiratória/fisiologia
20.
J Appl Physiol (1985) ; 129(3): 474-482, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702277

RESUMO

Sickle cell disease (SCD) causes exercise intolerance likely due to impaired skeletal muscle function and low nitric oxide (NO) bioavailability. Dietary nitrate improves hemodynamic and metabolic control during exercise in humans and animals. The purpose of this investigation was to assess the impact of nitrate supplementation on exercise capacity as measured by the running speed to exercise duration relationship [critical speed (CS)]in mice with SCD. We tested the hypothesis that nitrate supplementation via beetroot juice (BR) would attenuate the exercise intolerance observed in mice with SCD. Ten wild-type (WT) and 18 Berkley sickle-cell mice (BERK) received water (WT: n = 10, BERK: n = 10) or nitrate-rich BR (BERK+BR: n = 8, nitrate dose 1 mmol/kg/day) for 5 days. Following the supplementation period, all mice performed 3-5 constant-speed treadmill tests that resulted in exhaustion within 1.5 to 20 min. Time to exhaustion vs. treadmill speed was fit to a hyperbolic model to determine CS. CS was significantly lower in BERK vs. WT and BERK+BR with no significant difference between WT and BERK+BR (WT: 36.6 ± 1.6, BERK: 23.8 ± 1.5, BERK+BR: 31.1 ± 2.1 m/min, P < 0.05). Exercise tolerance, measured via CS, was significantly lower in BERK mice relative to WT. However, BERK mice receiving 5 days of nitrate supplementation exhibited no difference in exercise tolerance when compared with WT. These results support the potential utility of a dietary nitrate intervention to improve functionality in SCD patients.NEW & NOTEWORTHY Sickle cell disease compromises muscle O2 delivery resulting in exercise intolerance. Dietary nitrate supplementation increases skeletal muscle blood flow during exercise and may improve exercise capacity in a mouse model of sickle cell disease. We investigated the effects of dietary nitrate supplementation on exercise tolerance in a mouse model of sickle cell disease using the treadmill speed-duration relationship (critical speed). Mice with sickle cell disease provided with a dietary nitrate supplement had a critical speed not significantly different from healthy wild-type mice.


Assuntos
Anemia Falciforme , Beta vulgaris , Anemia Falciforme/tratamento farmacológico , Animais , Suplementos Nutricionais , Método Duplo-Cego , Tolerância ao Exercício , Humanos , Camundongos , Nitratos , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA