Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 330: 117096, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608604

RESUMO

Healthy soils are key to sustainability and food security. In temperate grasslands, not many studies have focused on soil health comparisons between contrasting pasture systems under different management strategies and treatment applications (e.g. manures and inorganic fertilisers). The aim of this study was to assess the responses of soil health indicators to dung, urine and inorganic N fertiliser in three temperate swards: permanent pasture not ploughed for at least 20 years (PP), high sugar ryegrass with white clover targeted at 30% coverage reseeded in 2013 (WC), and high sugar ryegrass reseeded in 2014 (HG). This study was conducted on the North Wyke Farm Platform (UK) from April 2017 to October 2017. Soil health indicators including soil organic carbon (SOC, measured by loss of ignition and elemental analyser), dissolved organic carbon (DOC), total nitrogen (TN), C:N ratio, soil C and N bulk isotopes, pH, bulk density (BD), aggregate stability, ergosterol concentration (as a proxy for fungi biomass), and earthworms (abundance, mass and density) were measured and analysed before and after application of dung and N fertilizer, urine and N fertiliser, and only N fertiliser. The highest SOC, TN, DOC, ergosterol concentration and earthworms as well as the lowest BD were found in PP, likely due to the lack of ploughing. Differences among treatments were observed due to the application of dung, resulting in an improvement in chemical indicators of soil health after 50 days of its application. Ergosterol concentration was significantly higher before treatment applications than at the end of the experiment. No changes were detected in BD and aggregate stability after treatment applications. We conclude that not enough time had passed for the soil to recover after the ploughing and reseeding of the permanent pasture, independently of the sward composition (HG or WC). Our results highlight the strong influence of the soil management legacy in temperate pasture and the positive effects of dung application on soil health over the short term. In addition, we point out the relevance of using standardised methods to report soil health indicators and some methodological limitations.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Fertilizantes/análise , Minerais , Ergosterol , Açúcares
2.
Rapid Commun Mass Spectrom ; 34(7): e8647, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31671472

RESUMO

RATIONALE: The isotopic composition of oxygen bound to phosphorus (δ18 OP value) offers an opportunity to gain insight into P cycling mechanisms. However, there is little information for tropical forest soils, which presents a challenge for δ18 OP measurements due to low available P concentrations. Here we report the use of a rapid ammonium fluoride extraction method (Bray-1) as an alternative to the widely used anion-exchange membrane (AEM) method for quantification of δ18 OP values of available P in tropical forest soils. METHODS: We compared P concentrations and δ18 OP values of available and microbial P determined by AEM and Bray-1 extraction for a series of tropical forest soils from Panama spanning a steep P gradient. This involved an assessment of the influence of extraction conditions, including temperature, extraction time, fumigation time and solution-to-soil ratio, on P concentrations and isotope ratios. RESULTS: Depending on the extraction conditions, Bray-1 P concentrations ranged from 0.2 to 66.3 mg P kg-1 across the soils. Extraction time and temperature had only minor effects on Bray-1 P, but concentrations increased markedly as the solution-to-soil ratio increased. In contrast, extraction conditions did not affect Bray-1 δ18 OP values, indicating that Bray-1 provides a robust measure of the isotopic composition of available soil P. For a relatively high P soil, available and fumigation-released (microbial) δ18 OP values determined by Bray-1 extraction (20‰ and 16‰, respectively) were higher than those determined by the AEM method (18‰ and 12‰, respectively), which we attribute to slightly different P pools extracted by the two methods and/or differences resulting from the longer extraction time needed for the AEM method. CONCLUSIONS: The short extraction time, insensitivity to extraction conditions and smaller mass of soil required to extract sufficient P for isotopic analysis make Bray-1extraction a suitable alternative to the AEM method for the determination of δ18 OP values of available P in tropical soils.


Assuntos
Compostos de Amônio/química , Fluoretos/química , Isótopos de Oxigênio/análise , Fósforo/análise , Solo/química , Algoritmos , Monitoramento Ambiental/métodos , Florestas , Espectrometria de Massas/métodos , Clima Tropical
3.
J Soils Sediments ; 20(12): 4160-4193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33239964

RESUMO

PURPOSE: This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. METHODS: Web of Science and Google Scholar were used to review published papers spanning the period 2013-2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018-2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. SCOPE: Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. CONCLUSIONS: The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach.

4.
Environ Sci Technol ; 53(12): 6718-6728, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31083927

RESUMO

The buffering of phosphorus concentrations in soil solution by the soil-solid phase is an important process for providing plant root access to nutrients. Accordingly, the size of labile solid phase-bound phosphorus pool and the rate at which it can resupply phosphorous into the dissolved phase can be important variables in determining when the plant availability of the nutrient may be limited. The phosphorus labile pool (Plabile) and its desorption kinetics were simultaneously evaluated in 10 agricultural UK soils using the diffusive gradients in thin-films (DGT) technique. The DGT-induced fluxes in the soil and sediments model (DIFS) was fitted to the time series of DGT deployments (1-240 h), which allowed the estimation of Plabile, and the system response time ( Tc). The Plabile concentration was then compared to that obtained by several soil P extracts including Olsen P, FeO-P, and water extractable P, in order to assess if the data from these analytical procedures can be used to represent the labile P across different soils. The Olsen P concentration, commonly used as a representation of the soil labile P pool, overestimated the desorbable P concentration by 6-fold. The use of this approach for the quantification of soil P desorption kinetic parameters found a wide range of equally valid solutions for Tc. Additionally, the performance of different DIFS model versions working in different dimensions (1D, 2D, and 3D) was compared. Although all models could provide a good fit to the experimental DGT time series data, the fitted parameters showed a poor agreement between different model versions. The limitations of the DIFS model family are associated with the assumptions taken in the modeling approach and the three-dimensional (3D) version is here considered to be the most precise among them.


Assuntos
Poluentes do Solo , Solo , Difusão , Cinética , Fósforo
5.
Rapid Commun Mass Spectrom ; 32(9): 703-710, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29490108

RESUMO

RATIONALE: Phosphorus losses from agriculture pose an environmental threat to watercourses. A new approach using the stable oxygen isotope ratio of oxygen in phosphate (δ18 OPO4 value) may help elucidate some phosphorus sources and cycling. Accurately determined and isotopically distinct source values are essential for this process. The δ18 OPO4 values of animal wastes have, up to now, received little attention. METHODS: Phosphate (PO4 ) was extracted from cattle faeces using anion resins and the contribution of microbial PO4 was assessed. The δ18 OPO4 value of the extracted PO4 was measured by precipitating silver phosphate and subsequent analysis on a thermal conversion elemental analyser at 1400°C, with the resultant carbon monoxide being mixed with a helium carrier gas passed through a gas chromatography (GC) column into a mass spectrometer. Faecal water oxygen isotope ratios (δ18 OH2O values) were determined on a dual-inlet mass spectrometer through a process of headspace carbon dioxide equilibration with water samples. RESULTS: Microbiological results indicated that much of the extracted PO4 was not derived directly from the gut fauna lysed during the extraction of PO4 from the faeces. Assuming that the faecal δ18 OH2O values represented cattle body water, the predicted pyrophosphatase equilibrium δ18 OPO4 (Eδ18 OPO4 ) values ranged between +17.9 and +19.9‰, while using groundwater δ18 OH2O values gave a range of +13.1 to +14.0‰. The faecal δ18 OPO4 values ranged between +13.2 and +15.3‰. CONCLUSIONS: The fresh faecal δ18 OPO4 values were equivalent to those reported elsewhere for agricultural animal slurry. However, they were different from the Eδ18 OPO4 value calculated from the faecal δ18 OH2O value. Our results indicate that slurry PO4 is, in the main, derived from animal faeces although an explanation for the observed value range could not be determined.


Assuntos
Fezes/química , Isótopos de Oxigênio/análise , Fosfatos/análise , Fosfatos/isolamento & purificação , Animais , Resinas de Troca Aniônica/química , Bovinos , Fezes/microbiologia , Feminino , Masculino , Espectrometria de Massas/métodos , Fosfatos/química
6.
Physiol Plant ; 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498417

RESUMO

Citrate and phytase root exudates contribute to improved phosphorus (P) acquisition efficiency in Nicotiana tabacum (tobacco) when both exudates are produced in a P deficient soil. To test the importance of root intermingling in the interaction of citrate and phytase exudates, Nicotiana tabacum plant-lines with constitutive expression of heterologous citrate (Cit) or fungal phytase (Phy) exudation traits were grown under two root treatments (roots separated or intermingled) and in two soils with contrasting soil P availability. Complementarity of plant mixtures varying in citrate efflux rate and mobility of the expressed phytase in soil was determined based on plant biomass and P accumulation. Soil P composition was evaluated using solution 31 P NMR spectroscopy. In the soil with limited available P, positive complementarity occurred in Cit+Phy mixtures with roots intermingled. Root separation eliminated positive interactions in mixtures expressing the less mobile phytase (Aspergillus niger PhyA) whereas positive complementarity persisted in mixtures that expressed the more mobile phytase (Peniophora lycii PhyA). Soils from Cit+Phy mixtures contained less inorganic P and more organic P compared to monocultures. Exudate-specific strategies for the acquisition of soil P were most effective in P-limited soil and depended on citrate efflux rate and the relative mobility of the expressed phytase in soil. Plant growth and soil P utilization in plant systems with complementary exudation strategies are expected to be greatest where exudates persist in soil and are expressed synchronously in space and time.

7.
Geoderma ; 285: 64-75, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28050050

RESUMO

In this study, we conduct a spatial analysis of soil total phosphorus (TP), acid extractable phosphate (PO4) and the stable oxygen (O) isotope ratio within the PO4 molecule (δ18OPO4 ) from an intensively managed agricultural grassland site. Total P in the soil was found to range from 736 to 1952 mg P kg- 1, of which between 12 and 48% was extractable using a 1 M HCl (HClPO4 ) solution with the two variables exhibiting a strong positive correlation. The δ18OPO4 of the extracted PO4 ranged from 17.0 to 21.6‰ with a mean of 18.8‰ (± 0.8). While the spatial variability of Total P has been researched at various scales, this is the first study to assess the variability of soil δ18OPO4 at a field-scale resolution. We investigate whether or not δ18OPO4 variability has any significant relationship with: (i) itself with respect to spatial autocorrelation effects; and (ii) HClPO4 , elevation and slope - both globally and locally. Results indicate that δ18OPO4 was not spatially autocorrelated; and that δ18OPO4 was only weakly related to HClPO4 , elevation and slope, when considering the study field as a whole. Interestingly, the latter relationships appear to vary in strength locally. In particular, the δ18OPO4 to HClPO4 relationship may depend on the underlying soil class and/or on different field managements that had operated across an historical north-south field division of the study field, a division that had been removed four years prior to this study.

8.
Environ Sci Technol ; 50(7): 3371-81, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26911395

RESUMO

The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.


Assuntos
Modelos Teóricos , Fósforo/química , Solo/química , Disponibilidade Biológica , Difusão , Ácido Edético/química , Monitoramento Ambiental/métodos , Cinética , Fósforo/análise , Fósforo/farmacocinética , Poluentes do Solo/análise , Poluentes do Solo/química , Reino Unido
9.
Environ Sci Technol ; 50(21): 11521-11531, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27700099

RESUMO

We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg-1. However, low organic acid doses (<2 mmol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (Kd) and desorption rate constants (k-1) decreased whereas an increase in the response time of solution P equilibration (Tc) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.


Assuntos
Fósforo , Solo , Ácidos , Compostos Orgânicos , Poluentes do Solo
10.
Geoderma ; 284: 93-102, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27990026

RESUMO

Soil organic phosphorus contributes to the nutrition of tropical trees, but is not accounted for in standard soil phosphorus tests. Plants and microbes can release organic anions to solubilize organic phosphorus from soil surfaces, and synthesize phosphatases to release inorganic phosphate from the solubilized compounds. We developed a procedure to estimate bioavailable organic phosphorus in tropical forest soils by simulating the secretion processes of organic acids and phosphatases. Five lowland tropical forest soils with contrasting properties (pH 4.4-6.1, total P 86-429 mg P kg- 1) were extracted with 2 mM citric acid (i.e., 10 µmol g- 1, approximating rhizosphere concentrations) adjusted to soil pH in a 4:1 solution to soil ratio for 1 h. Three phosphatase enzymes were then added to the soil extract to determine the forms of hydrolysable organic phosphorus. Total phosphorus extracted by the procedure ranged between 3.22 and 8.06 mg P kg- 1 (mean 5.55 ± 0.42 mg P kg- 1), of which on average three quarters was unreactive phosphorus (i.e., organic phosphorus plus inorganic polyphosphate). Of the enzyme-hydrolysable unreactive phosphorus, 28% was simple phosphomonoesters hydrolyzed by phosphomonoesterase from bovine intestinal mucosa, a further 18% was phosphodiesters hydrolyzed by a combination of nuclease from Penicillium citrinum and phosphomonoesterase, and the remaining 51% was hydrolyzed by a broad-spectrum phytase from wheat. We conclude that soil organic phosphorus can be solubilized and hydrolyzed by a combination of organic acids and phosphatase enzymes in lowland tropical forest soils, indicating that this pathway could make a significant contribution to biological phosphorus acquisition in tropical forests. Furthermore, we have developed a method that can be used to assess the bioavailability of this soil organic phosphorus.

11.
J Exp Bot ; 66(8): 2239-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25628330

RESUMO

Soil drying and re-wetting (DRW) occurs at varying frequencies and intensities during crop production, and is deliberately used in water-saving irrigation techniques that aim to enhance crop water use efficiency. Soil drying not only limits root water uptake which can (but not always) perturb shoot water status, but also alters root synthesis of phytohormones and their transport to shoots to regulate leaf growth and gas exchange. Re-wetting the soil rapidly restores leaf water potential and leaf growth (minutes to hours), but gas exchange recovers more slowly (hours to days), probably mediated by sustained changes in root to shoot phytohormonal signalling. Partial rootzone drying (PRD) deliberately irrigates only part of the rootzone, while the remainder is allowed to dry. Alternating these wet and dry zones (thus re-wetting dry soil) substantially improves crop yields compared with maintaining fixed wet and dry zones or conventional deficit irrigation, and modifies phytohormonal (especially abscisic acid) signalling. Alternate wetting and drying (AWD) of rice can also improve yield compared with paddy culture, and is correlated with altered phytohormonal (including cytokinin) signalling. Both PRD and AWD can improve crop nutrition, and re-wetting dry soil provokes both physical and biological changes which affect soil nutrient availability. Whether this alters crop nutrient uptake depends on competition between plant and microbes for nutrients, with the rate of re-wetting determining microbial dynamics. Nevertheless, studies that examine the effects of soil DRW on both crop nutritional and phytohormonal responses are relatively rare; thus, determining the cause(s) of enhanced crop yields under AWD and PRD remains challenging.


Assuntos
Irrigação Agrícola , Dessecação , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Solo , Transdução de Sinais/efeitos dos fármacos
12.
Sci Rep ; 14(1): 16007, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992147

RESUMO

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Assuntos
Ração Animal , Fezes , Solo , Urina , Animais , Fezes/química , Bovinos , Solo/química , Ovinos , Urina/química , Ração Animal/análise , Nutrientes/análise , Nutrientes/metabolismo , Ruminantes/fisiologia , Nitrogênio/metabolismo , Nitrogênio/urina , Nitrogênio/análise , Fósforo/urina , Fósforo/análise , Fósforo/metabolismo
13.
Hydrol Process ; 36(11): e14733, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36636488

RESUMO

Buffer strips continue to feature in the management of agricultural runoff and water pollution in many countries. Existing research has explored their efficacy for reducing environmental problems in different geoclimatic settings but, the evidence on the efficacy of different vegetation treatments is less abundant than that for other buffer strip characteristics, including width, and is more contradictory in nature. With policy targets for various environmental outcomes including water or air quality and net zero pointing to the need for conversion of agricultural land, the need for robust experimental evidence on the relative benefits of different vegetation types in buffer strips is now renewed. Our experiment used a replicated plot scale facility to compare the efficacy of 12 m wide buffer strips for controlling runoff and suspended sediment loss during 15 sampled storms spanning 2017-2020. The buffer strips comprised three vegetation treatments: a deep rooting grass (Festulolium cv. Prior), a short rotation coppice willow and native broadleaved woodland trees. Over the duration of the monitoring period, reductions in total runoff, compared with the experimental control, were in the order: willow buffer strips (49%); deciduous woodland buffer strips (46%); grass buffer strips (33%). The corresponding reductions in suspended sediment loss, relative to the experimental control, were ordered: willow buffer strips (44%) > deciduous woodland buffer strips (30%) > grass buffer strips (29%). Given the 3-year duration of our new dataset, our results should be seen as providing evidence on the impacts during the establishment phase of the treatments.

14.
PLoS One ; 17(11): e0277091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36322593

RESUMO

The use of multispecies swards on livestock farms is growing due to the wide range of benefits they bring, such as improved biomass yield and animal performance. Preferential uptake of micronutrients by some plant species means the inclusion of legumes and forbs in grass-dominated pasture swards could improve micronutrient provision to livestock via careful species selection. However, although soil properties affect plant micronutrient concentrations, it is unknown whether choosing 'best-performing' species, in terms of their micronutrient content, needs to be soil-specific or whether the recommendations can be more generic. To address this question, we carried out an experiment with 15 common grass, forb and legume species grown on four soils for five weeks in a controlled environment. The soils were chosen to have contrasting properties such as texture, organic matter content and micronutrient concentrations. The effect of soil pH was tested on two soils (pH 5.4 and 7.4) chosen to minimise other confounding variables. Yield was significantly affected by soil properties and there was a significant interaction with botanical group but not species within a botanical group (grass, forb or legume). There were differences between botanical groups and between species in both their micronutrient concentrations and total uptake. Micronutrient herbage concentrations often, but not always, reflected soil micronutrient concentrations. There were soil-botanical group interactions for micronutrient concentration and uptake by plants, but the interaction between plant species (within a botanical group) and soil was significant only for forbs, and predominantly occurred when considering micronutrient uptake rather than concentration. Generally, plants had higher yields and micronutrient contents at pH 5.4 than 7.4. Forbs tended to have higher concentrations of micronutrients than other botanical groups and the effect of soil on micronutrient uptake was only significant for forbs.


Assuntos
Fabaceae , Oligoelementos , Animais , Solo/química , Micronutrientes , Poaceae/química , Plantas
15.
Case Rep Dermatol ; 13(1): 1-6, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613226

RESUMO

Intralymphatic histiocytosis (ILH) is a rare cutaneous condition initially described in 1994 by O'Grady et al. It often appears as a red to violaceous, livedoid patch or plaque usually on the extremities. We present a 71-year-old female with a history of psoriasis, 50 pack years smoking and recent Legionnaires disease who came to us complaining of a red to violaceous, blanching, edematous, mildly tender lesion covering the left lower lip and extending to the chin and anterior neck. After multiple biopsies, ILH was confirmed and the patient was initially started on tacrolimus 0.1% ointment b.i.d., but there was no response. Then, she was started on oral pentoxifylline and intermittent topical steroids, as well as continuing the topical tacrolimus. There was again no response, so now she is taking a TNF-ɑ inhibitor as it appears to be a granulomatous process. These ILH cases are very rare and there is limited literature that describes one treatment as a cure. Treatment of ILH is very difficult, but several different therapies have been reported with varying success. If the disease is secondary to an underlying inflammatory disease or malignancy, then treatment of the primary disorder can lead to resolution of the ILH.

16.
Sci Rep ; 10(1): 2065, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034236

RESUMO

Field data about the effect of soil pH on phosphorus (P) cycling is limited. A promising tool to study P cycling under field conditions is the 18O:16O ratio of phosphate (δ18OP). In this study we investigate whether the δ18OP can be used to elucidate the effect of soil pH on P cycling in grasslands. Soils and plants were sampled from different fertilisation and lime treatments of the Park Grass long term experiment at Rothamsted Research, UK. The soils were sequentially extracted to isolate different soil P pools, including available P and corresponding δ18OP values were determined. We did not observe changes in plant δ18OP value, but soil P δ18OP values changed, and lower δ18OP values were associated with higher soil pH values. At sites where P was not limiting, available P δ18OP increased by up to 3‰ when lime was applied. We show that the δ18OP method is a useful tool to investigate the effect of pH on soil P cycling under field conditions as it highlights that different soil processes must govern P availability as pH shifts. The next challenge is now to identify these underlying processes, enabling better management of soil P at different pH.

17.
Plants (Basel) ; 8(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600980

RESUMO

The phosphorus (P) supply from soils is crucial to crop production. Given the complexity involved in P-cycling, a model that can simulate the major P-cycling processes and link with other nutrients and environmental factors, e.g., soil temperature and moisture, would be a useful tool. The aim of this study was to describe a process-based P module added to the SPACSYS (Soil Plant and Atmosphere Continuum System) model and to evaluate its predictive capability on the dynamics of P content in crops and the impact of soil P status on crop growth. A P-cycling module was developed and linked to other modules included in the SPACSYS model. We used a winter wheat (Triticum aestivum, cv Xi-19) field experiment at Rothamsted Research in Harpenden to calibrate and validate the model. Model performance statistics show that the model simulated aboveground dry matter, P accumulation and soil moisture dynamics reasonably well. Simulated dynamics of soil nitrate and ammonium were close to the observed data when P fertiliser was applied. However, there are large discrepancies in fields without P fertiliser. This study demonstrated that the SPACSYS model was able to investigate the interactions between carbon, nitrogen, P and water in a single process-based model after the tested P module was implemented.

18.
PLoS One ; 14(9): e0221647, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31483806

RESUMO

Our food security depends on finding a sustainable alternative to rock phosphate for fertilizer production. Furthermore, over 2 billion people worldwide are currently affected by micronutrient deficiencies, and crop concentrations of essential minerals are declining. This paper examines whether a novel multi-element fertilizer, Thallo®, can produce crop yields comparable to conventional rock phosphate derived fertilizers, and have an additional benefit of increasing essential mineral concentrations. Thallo®, produced from abattoir and recycled industrial by-products, was tested against conventional mineral fertilizers in a pot trial with wheat and grass. In soil, yields were comparable between the fertilizer types, but, in a low-nutrient substrate, Thallo® showed a yield benefit. Elemental concentrations in the plant material typically reflected the relative concentrations in the fertilizer, and Thallo® fertilized plants contained significantly more of some essential elements, such as selenium and zinc. Furthermore, concentrations of the toxic element cadmium were significantly lower in Thallo® fertilized crops. Among the fertilizers, manganese concentrations were greatest in the Thallo®, but within the fertilized plants, they were greatest under the mineral fertilizer, showing the complexity of assessing whether nutrients will be taken up by crops. In summary, fertilizers from livestock waste have the potential to improve wheat and grass concentrations of essential elements while maintaining yields.


Assuntos
Matadouros , Biofortificação , Produtos Agrícolas/efeitos dos fármacos , Fertilizantes/análise , Minerais/farmacologia , Fósforo/análise , Resíduos , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Fósforo/farmacologia , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
19.
Plant Soil ; 427(1): 175-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996484

RESUMO

BACKGROUND AND AIMS: Bacterial Non-Specific Acid Phosphatase (NSAP) enzymes are capable of dephosphorylating diverse organic phosphoesters but are rarely studied: their distribution in natural and managed environments is poorly understood. The aim of this study was to generate new insight into the environmental distribution of NSAPs and establish their potential global relevance to cycling of organic phosphorus. METHODS: We employed bioinformatic tools to determine NSAP diversity and subcellular localization in microbial genomes; used the corresponding NSAP gene sequences to census metagenomes from diverse ecosystems; studied the effect of long-term land management upon NSAP diversity and abundance. RESULTS: Periplasmic class B NSAPs are poorly represented in marine and terrestrial environments, reflecting their association with enteric and pathogenic bacteria. Periplasmic class A and outer membrane-associated class C NSAPs are cosmopolitan. NSAPs are more abundant in marine than terrestrial ecosystems and class C more abundant than class A genes, except in an acidic peat where class A genes dominate. A clear effect of land management upon gene abundance was identified. CONCLUSIONS: NSAP genes are cosmopolitan. Class C genes are more widely distributed: their association with the outer-membrane of cells gives them a clear role in the cycling of organic phosphorus, particularly in soils.

20.
Plant Soil ; 427(1): 5-16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996482

RESUMO

BACKGROUND: Phosphorus (P) fertilizer is usually applied in excess of plant requirement and accumulates in soils due to its strong adsorption, rapid precipitation and immobilisation into unavailable forms including organic moieties. As soils are complex and diverse chemical, biochemical and biological systems, strategies to access recalcitrant soil P are often inefficient, case specific and inconsistently applicable in different soils. Finding a near-universal or at least widely applicable solution to the inefficiency in agricultural P use by plants is an important unsolved problem that has been under investigation for more than half a century. SCOPE: In this paper we critically review the strategies proposed for the remobilization of recalcitrant soil phosphorus for crops and pastures worldwide. We have additionally performed a meta-analysis of available soil 31P-NMR data to establish the potential agronomic value of different stored P forms in agricultural soils. CONCLUSIONS: Soil inorganic P stocks accounted on average for 1006 ± 115 kg ha-1 (57 ± 7%), while the monoester P pool accounted for 587 ± 32 kg ha-1 (33 ± 2%), indicating the huge potential for the future agronomic use of the soil legacy P. New impact driven research is needed in order to create solutions for the sustainable management of soil P stocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA