Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 560(7717): 179-184, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046114

RESUMO

Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information. Here we demonstrate strong coupling between single microwave photons in a niobium titanium nitride high-impedance resonator and a three-electron spin qubit (also known as a resonant exchange qubit) in a gallium arsenide device consisting of three quantum dots. We observe the vacuum Rabi mode splitting of the resonance of the resonator, which is a signature of strong coupling; specifically, we observe a coherent coupling strength of about 31 megahertz and a qubit decoherence rate of about 20 megahertz. We can tune the decoherence electrostatically to obtain a minimal decoherence rate of around 10 megahertz for a coupling strength of around 23 megahertz. We directly measure the dependence of the qubit-photon coupling strength on the tunable electric dipole moment of the qubit using the 'AC Stark' effect. Our demonstration of strong qubit-photon coupling for a three-electron spin qubit is an important step towards coherent long-distance coupling of spin qubits.

2.
Nature ; 558(7709): 264-267, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899478

RESUMO

Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information5-8. Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

3.
Phys Rev Lett ; 125(26): 260502, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449744

RESUMO

Superconducting circuits are a strong contender for realizing quantum computing systems and are also successfully used to study quantum optics and hybrid quantum systems. However, their cryogenic operation temperatures and the current lack of coherence-preserving microwave-to-optical conversion solutions have hindered the realization of superconducting quantum networks spanning different cryogenic systems or larger distances. Here, we report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters. We transfer qubit states and generate entanglement on demand with average transfer and target state fidelities of 85.8% and 79.5%, respectively, between the two nodes of this elementary network. Cryogenic microwave links provide an opportunity to scale up systems for quantum computing and create local area superconducting quantum communication networks over length scales of at least tens of meters.

4.
Phys Rev Lett ; 122(1): 010504, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012689

RESUMO

We characterize a fluxonium qubit consisting of a Josephson junction inductively shunted with a NbTiN nanowire superinductance. We explain the measured energy spectrum by means of a multimode theory accounting for the distributed nature of the superinductance and the effect of the circuit nonlinearity to all orders in the Josephson potential. Using multiphoton Raman spectroscopy, we address multiple fluxonium transitions, observe multilevel Autler-Townes splitting and measure an excited state lifetime of T_{1}=20 µs. By measuring T_{1} at different magnetic flux values, we find a crossover in the lifetime limiting mechanism from capacitive to inductive losses.

5.
Phys Rev Lett ; 121(6): 060502, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141638

RESUMO

Active qubit reset is a key operation in many quantum algorithms, and particularly in quantum error correction. Here, we experimentally demonstrate a reset scheme for a three-level transmon artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state in less than 500 ns and with 0.2% residual excitation. Our protocol is of practical interest as it has no additional architectural requirements beyond those needed for fast and efficient single-shot readout of transmons, and does not require feedback.

6.
Osteoporos Int ; 27(10): 3103-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27222105

RESUMO

UNLABELLED: Nutritional approaches may help to preserve bone quality. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) including micellar casein rich in calcium, vitamin D2 and vitamin K2, to improve bone mineral density. INTRODUCTION: The aim of postmenopausal osteoporosis treatment is to decrease bone resorption and/or increase bone formation. Because of the slow bone turnover, osteoporosis prevention and therapies are long-lasting, implying great costs and poor compliance. Even if the effects of nutrition on bone are not as marked as that of pharmaceutical agents, it can be of great help. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) containing micellar casein rich in calcium, vitamin D2 and vitamin K2, for the improvement of bone mineral density (BMD). METHODS: An ovariectomized mice model was used to study the effect of different concentrations of the ingredient on BMD and microarchitectural parameters. Blood concentrations of C-terminal telopeptide of type I collagen (CTX), N-terminal propeptide of type 1 procollagene (PINP), alkaline phosphatase (ALP), osteocalcin (OC) and RANKL were also measured to evaluate bone remodelling, To evaluate the efficiency of the product to modulate osteoblast and osteoclast growth and differentiation, primary murine bone cells were used. RESULTS: In vivo studies showed that BMD and microarchitectural parameters were dose-dependently improved after ingestion of the supplement for 3 months. We also report increased osteoblast activity as shown by increased OC activity and decreased osteoclastogenesis as shown by reduced CTX activity. In vitro studies support that BHPs stimulate osteoblast differentiation and mineralization and inhibit osteoclast resorption activity. CONCLUSION: Our results show that, when chronically ingested, BHPs improve BMD of ovariectomized mice. This work supports that providing an ingredient including micellar casein rich in calcium, vitamin D2 and vitamin K2 is more efficient than the control diet to maintain bone quality.


Assuntos
Densidade Óssea , Osso e Ossos/efeitos dos fármacos , Cálcio/farmacologia , Caseínas/farmacologia , Ergocalciferóis/farmacologia , Animais , Feminino , Camundongos , Micelas , Osteocalcina/sangue , Ovariectomia , Vitaminas/farmacologia
7.
Int J Obes (Lond) ; 39(4): 702-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25091727

RESUMO

BACKGROUND: In utero undernutrition is associated with obesity and insulin resistance, although its effects on skeletal muscle remain poorly defined. Therefore, in the current study we explored the effects of in utero food restriction on muscle energy metabolism in mice. METHODS: We used an experimental mouse model system of maternal undernutrition during late pregnancy to examine offspring from undernourished dams (U) and control offspring from ad libitum-fed dams (C). Weight loss of 10-week-old offspring on a 4-week 40% calorie-restricted diet was also followed. Experimental approaches included bioenergetic analyses in isolated mitochondria, intact (permeabilized) muscle and at the whole body level. RESULTS: U have increased adiposity and decreased glucose tolerance compared to C. Strikingly, when U are put on a 40% calorie-restricted diet they lose half as much weight as calorie-restricted controls. Mitochondria from muscle overall from U had decreased coupled (state 3) and uncoupled (state 4) respiration and increased maximal respiration compared to C. Mitochondrial yield was lower in U than C. In permeabilized fiber preparations from mixed fiber-type muscle, U had decreased mitochondrial content and decreased adenylate-free leak respiration, fatty acid oxidative capacity and state 3 respiratory capacity through complex I. Fiber maximal oxidative phosphorylation capacity did not differ between U and C but was decreased with calorie restriction. CONCLUSIONS: Our results reveal that in utero undernutrition alters metabolic physiology through a profound effect on skeletal muscle energetics and blunts response to a hypocaloric diet in adulthood. We propose that mitochondrial dysfunction links undernutrition in utero with metabolic disease in adulthood.


Assuntos
Glicemia/metabolismo , Restrição Calórica/efeitos adversos , Recém-Nascido de Baixo Peso/metabolismo , Desnutrição/patologia , Músculo Esquelético/patologia , Adiposidade , Animais , Modelos Animais de Doenças , Camundongos , Redução de Peso
8.
Nature ; 460(7252): 240-4, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19561592

RESUMO

Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

9.
Nature ; 454(7202): 315-8, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18633413

RESUMO

The field of cavity quantum electrodynamics (QED), traditionally studied in atomic systems, has gained new momentum by recent reports of quantum optical experiments with solid-state semiconducting and superconducting systems. In cavity QED, the observation of the vacuum Rabi mode splitting is used to investigate the nature of matter-light interaction at a quantum-mechanical level. However, this effect can, at least in principle, be explained classically as the normal mode splitting of two coupled linear oscillators. It has been suggested that an observation of the scaling of the resonant atom-photon coupling strength in the Jaynes-Cummings energy ladder with the square root of photon number n is sufficient to prove that the system is quantum mechanical in nature. Here we report a direct spectroscopic observation of this characteristic quantum nonlinearity. Measuring the photonic degree of freedom of the coupled system, our measurements provide unambiguous spectroscopic evidence for the quantum nature of the resonant atom-field interaction in cavity QED. We explore atom-photon superposition states involving up to two photons, using a spectroscopic pump and probe technique. The experiments have been performed in a circuit QED set-up, in which very strong coupling is realized by the large dipole coupling strength and the long coherence time of a superconducting qubit embedded in a high-quality on-chip microwave cavity. Circuit QED systems also provide a natural quantum interface between flying qubits (photons) and stationary qubits for applications in quantum information processing and communication.

10.
Phys Rev Lett ; 110(4): 047001, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166193

RESUMO

We measure the quantum fluctuations of a pumped nonlinear resonator using a superconducting artificial atom as an in situ probe. The qubit excitation spectrum gives access to the frequency and amount of excitation of the intracavity field fluctuations, from which we infer its effective temperature. These quantities are found to be in agreement with theoretical predictions; in particular, we experimentally observe the phenomenon of quantum heating.

11.
Nature ; 449(7161): 443-7, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17898763

RESUMO

Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.

12.
Nature ; 445(7127): 515-8, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17268464

RESUMO

Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)-the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.

13.
Med Phys ; 50(4): 2380-2384, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599147

RESUMO

BACKGROUND: 177 Lu prostate-specific membrane antigen (PSMA) therapy prolongs survival for some prostate cancer patients. To adopt this technique, institutions may need to evaluate the suitability of existing infrastructure. PURPOSE: Develop a methodology to determine whether existing facilities can accommodate a 177 Lu-PSMA therapy program. METHODS: Room suitability is defined by both the ability to accommodate 177 Lu-PSMA therapy workflow and to provide appropriate radiation shielding. Two methods of shielding calculation were performed: (1) National Council on Radiation Protection and Measurements report 151 (NCRP-151), with workload defined in terms of the activity of 177 Lu administered, and (2) using the RadPro shielding calculator. This methodology was applied to 131 I therapy, PET-CT uptake, PET-SPECT injection, and orthovoltage therapy rooms. RESULTS: 131 I therapy rooms were found to meet both shielding and workflow requirements. The shielding was found to be adequate for orthovoltage and PET-SPECT facilities, neglecting patient transit between external washrooms. The workflow was the limiting factor for these rooms due to the requirement of dedicated washrooms that shield the patient and contain possible contamination. The PET-CT facility did not meet either criteria. The NCRP-151 method generally predicted a higher dose rate on the other side of shielding than did the RadPro calculator. The dose rate on the other side of concrete shielding as predicted by the NCRP-151 method increased relative to the dose rate predicted by the RadPro calculator as shielding thickness increased. For lead shielding, the dose rate predicted by the NCRP-151 method decreased relative to the result predicted by the RadPro calculator with increasing material thickness. CONCLUSIONS: 131 I therapy, PET-CT uptake, PET-SPECT injection, and orthovoltage therapy rooms were considered. The 131 I treatment rooms were the best candidate for 177 Lu-PSMA therapy, due to their shielding and capability to accommodate the necessary workflow.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Radioisótopos , Masculino , Humanos , Radioisótopos/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Lutécio/uso terapêutico , Próstata , Dipeptídeos/uso terapêutico , Antígeno Prostático Específico , Compostos Radiofarmacêuticos
14.
Osteoporos Int ; 23(7): 1909-19, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21927918

RESUMO

SUMMARY: This study evaluates the effect of hydrolyzed collagen (HC) on bone health of ovariectomized mice (OVX) at different ages. Twenty-six weeks after the OVX procedure, HC ingestion was still able to improve significantly bone mineral density (BMD) and some femur biomechanical parameters. Moreover, HC ingestion for 1 month before surgery prevented BMD decrease. INTRODUCTION: HC can play an important role in preserving BMD before osteoporosis appears. The aim of this study was to evaluate the effect of HC on bone health of ovariectomized mice at different ages. METHODS: Female C3H mice were either OVX at 3 or 6 months and fed for 6 months (first experiment) or 3 months (second experiment) with diet including 0, 10, or 25 g/kg of HC. In the second experiment, one group received HC 1 month before surgery, and two groups received the supplementation immediately after surgery, one fed ad libitum and the other by gavage. Mice treated with raloxifene were used as a positive control. BMD, femur intrinsic and extrinsic biomechanical properties, and type I collagen C-terminal telopeptide were measured after 12 and 26 weeks. Food intake and spontaneous physical activity were also recorded. RESULTS: The OVX procedure increased body weight, while food intake decreased, thus suggesting that resting metabolism was decreased. Ingestion of 25 g/kg of HC for 3 or 6 months reduced bone loss significantly in, respectively, 3- and 6-month-old OVX mice. The lowest HC concentration was less efficient. HC ingestion for 3 months is as efficient as raloxifene to protect 3-month-old OVX mice from bone loss. Our results also demonstrated that HC ingestion before surgery prevented the BMD decreases. CONCLUSION: This study confirms that dietary collagen reduces bone loss in OVX mice by increasing the diameter of the cortical areas of femurs and can have a preventive effect.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Colágeno/uso terapêutico , Osteoporose/prevenção & controle , Fatores Etários , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/fisiologia , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/fisiopatologia , Reabsorção Óssea/prevenção & controle , Colágeno/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ingestão de Alimentos/fisiologia , Feminino , Hidrólise , Camundongos , Camundongos Endogâmicos C3H , Osteoporose/fisiopatologia , Ovariectomia
15.
Phys Rev Lett ; 108(4): 046807, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400878

RESUMO

We demonstrate the realization of a hybrid solid-state quantum device, in which a semiconductor double quantum dot is dipole coupled to the microwave field of a superconducting coplanar waveguide resonator. The double dot charge stability diagram extracted from measurements of the amplitude and phase of a microwave tone transmitted through the resonator is in good agreement with that obtained from transport measurements. Both the observed frequency shift and linewidth broadening of the resonator are explained considering the double dot as a charge qubit coupled with a strength of several tens of MHz to the resonator.

16.
Phys Rev Lett ; 109(15): 153601, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102305

RESUMO

We observe measurement-induced qubit state mixing in a transmon qubit dispersively coupled to a planar readout cavity. Our results indicate that dephasing noise at the qubit-readout detuning frequency is up-converted by readout photons to cause spurious qubit state transitions, thus limiting the nondemolition character of the readout. Furthermore, we use the qubit transition rate as a tool to extract an equivalent flux noise spectral density at f~1 GHz and find agreement with values extrapolated from a 1/f(α) fit to the measured flux noise spectral density below 1 Hz.

17.
Phys Rev Lett ; 106(24): 243601, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770569

RESUMO

Creating a train of single photons and monitoring its propagation and interaction is challenging in most physical systems, as photons generally interact very weakly with other systems. However, when confining microwave frequency photons in a transmission line resonator, effective photon-photon interactions can be mediated by qubits embedded in the resonator. Here, we observe the phenomenon of photon blockade through second-order correlation function measurements. The experiments clearly demonstrate antibunching in a continuously pumped source of single microwave photons measured by using microwave beam splitters, linear amplifiers, and quadrature amplitude detectors. We also investigate resonance fluorescence and Rayleigh scattering in Mollow-triplet-like spectra.

18.
Phys Rev Lett ; 106(16): 167002, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599402

RESUMO

We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.

19.
Phys Rev Lett ; 105(22): 223601, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21231385

RESUMO

A number of superconducting qubits, such as the transmon or the phase qubit, have an energy level structure with small anharmonicity. This allows for convenient access of higher excited states with similar frequencies. However, special care has to be taken to avoid unwanted higher-level populations when using short control pulses. Here we demonstrate the preparation of arbitrary three level superposition states using optimal control techniques in a transmon. Performing dispersive readout, we extract the populations of all three levels of the qutrit and study the coherence of its excited states. Finally we demonstrate full quantum state tomography of the prepared qutrit states and evaluate the fidelities of a set of states, finding on average 95%.

20.
Nature ; 431(7005): 162-7, 2004 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-15356625

RESUMO

The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA