Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2221826120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276425

RESUMO

Thousands of insect species have been introduced outside of their native ranges, and some of them strongly impact ecosystems and human societies. Because a large fraction of insects feed on or are associated with plants, nonnative plants provide habitat and resources for invading insects, thereby facilitating their establishment. Furthermore, plant imports represent one of the main pathways for accidental nonnative insect introductions. Here, we tested the hypothesis that plant invasions precede and promote insect invasions. We found that geographical variation in current nonnative insect flows was best explained by nonnative plant flows dating back to 1900 rather than by more recent plant flows. Interestingly, nonnative plant flows were a better predictor of insect invasions than potentially confounding socioeconomic variables. Based on the observed time lag between plant and insect invasions, we estimated that the global insect invasion debt consists of 3,442 region-level introductions, representing a potential increase of 35% of insect invasions. This debt was most important in the Afrotropics, the Neotropics, and Indomalaya, where we expect a 10 to 20-fold increase in discoveries of new nonnative insect species. Overall, our results highlight the strong link between plant and insect invasions and show that limiting the spread of nonnative plants might be key to preventing future invasions of both plants and insects.


Assuntos
Insetos , Espécies Introduzidas , Animais , Plantas
2.
Ecol Appl ; 31(7): e02412, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255404

RESUMO

As part of national biosecurity programs, cargo imports, passenger baggage, and international mail are inspected at ports of entry to verify compliance with phytosanitary regulations and to intercept potentially damaging nonnative species to prevent their introduction. Detection of organisms during inspections may also provide crucial information about the species composition and relative arrival rates in invasion pathways that can inform the implementation of other biosecurity practices such as quarantines and surveillance. In most regions, insects are the main taxonomic group encountered during inspections. We gathered insect interception data from nine world regions collected from 1995 to 2019 to compare the composition of species arriving at ports in these regions. Collectively, 8,716 insect species were intercepted in these regions over the last 25 yr, with the combined international data set comprising 1,899,573 interception events, of which 863,972 were identified to species level. Rarefaction analysis indicated that interceptions comprise only a small fraction of species present in invasion pathways. Despite differences in inspection methodologies, as well as differences in the composition of import source regions and imported commodities, we found strong positive correlations in species interception frequencies between regions, particularly within the Hemiptera and Thysanoptera. There were also significant differences in species frequencies among insects intercepted in different regions. Nevertheless, integrating interception data among multiple regions would be valuable for estimating invasion risks for insect species with high likelihoods of introduction as well as for identifying rare but potentially damaging species.


Assuntos
Insetos , Espécies Introduzidas , Animais , Humanos
3.
Mar Environ Res ; 179: 105644, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35696877

RESUMO

Coastal ecosystems are essential for absorbing and bouncing back from the impacts of climate change, yet accelerating climate change is causing anthropogenically-derived stressors in these ecosystems to grow. The effects of stressors are more difficult to foresee when they act simultaneously, however, predicting these effects is critical for understanding ecological change. Spartina alterniflora (Spartina), a foundational saltmarsh plant key to coastal resilience, is subject to biological stress such as herbivory, as well as anthropogenic stress such as chemical pollution. Using saltmarsh mesocosms as a model system in a fully factorial experiment, we tested whether the effects of herbivory and two chemicals (oil and dispersant) were mediated or magnified in combination. Spartina responded to stressors asynchronously; ecophysiology responded negatively to oil and herbivores in the first 2-3 weeks of the experiment, whereas biomass responded negatively to oil and herbivores cumulatively throughout the experiment. We generally found mixed multi-stressor effects, with slightly more antagonistic effects compared to either synergistic or additive effects, despite significant reductions in Spartina biomass and growth from both chemical and herbivore treatments. We also observed an indirect positive effect of oil on Spartina, via a direct negative effect on insect herbivores. Our findings suggest that multi-stressor effects in our model system, 1) are mixed but can be antagonistic more often than expected, a finding contrary to previous assumptions of primarily synergistic effects, 2) can vary in duration, 3) can be difficult to discern a priori, and 4) can lead to ecological surprises through indirect effects with implications for coastal resilience. This leads us to conclude that understanding the simultaneous effects of multiple stressors is critical for predicting foundation-species persistence, discerning ecosystem resilience, and managing and mitigating impacts on ecosystem services.


Assuntos
Ecossistema , Herbivoria , Biomassa , Mudança Climática , Poaceae
4.
PLoS One ; 13(7): e0199789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979709

RESUMO

Growth of the open science movement has drawn significant attention to data sharing and availability across the scientific community. In this study, we tested the ability to recover data collected under a particular funder-imposed requirement of public availability. We assessed overall data recovery success, tested whether characteristics of the data or data creator were indicators of recovery success, and identified hurdles to data recovery. Overall the majority of data were not recovered (26% recovery of 315 data projects), a similar result to journal-driven efforts to recover data. Field of research was the most important indicator of recovery success, but neither home agency sector nor age of data were determinants of recovery. While we did not find a relationship between recovery of data and age of data, age did predict whether we could find contact information for the grantee. The main hurdles to data recovery included those associated with communication with the researcher; loss of contact with the data creator accounted for half (50%) of unrecoverable datasets, and unavailability of contact information accounted for 35% of unrecoverable datasets. Overall, our results suggest that funding agencies and journals face similar challenges to enforcement of data requirements. We advocate that funding agencies could improve the availability of the data they fund by dedicating more resources to enforcing compliance with data requirements, providing data-sharing tools and technical support to awardees, and administering stricter consequences for those who ignore data sharing preconditions.


Assuntos
Acesso à Informação , Comunicação , Ética em Pesquisa , Financiamento Governamental , Disseminação de Informação , Publicações/normas , Pesquisadores/ética , Comportamento Cooperativo , Difusão de Inovações , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA