Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
2.
Nat Immunol ; 18(9): 1004-1015, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28759001

RESUMO

Avoiding destruction by immune cells is a hallmark of cancer, yet how tumors ultimately evade control by natural killer (NK) cells remains incompletely defined. Using global transcriptomic and flow-cytometry analyses and genetically engineered mouse models, we identified the cytokine-TGF-ß-signaling-dependent conversion of NK cells (CD49a-CD49b+Eomes+) into intermediate type 1 innate lymphoid cell (intILC1) (CD49a+CD49b+Eomes+) populations and ILC1 (CD49a+CD49b-Eomesint) populations in the tumor microenvironment. Strikingly, intILC1s and ILC1s were unable to control local tumor growth and metastasis, whereas NK cells favored tumor immunosurveillance. Experiments with an antibody that neutralizes the cytokine TNF suggested that escape from the innate immune system was partially mediated by TNF-producing ILC1s. Our findings provide new insight into the plasticity of group 1 ILCs in the tumor microenvironment and suggest that the TGF-ß-driven conversion of NK cells into ILC1s is a previously unknown mechanism by which tumors escape surveillance by the innate immune system.


Assuntos
Reprogramação Celular/imunologia , Fibrossarcoma/imunologia , Neoplasias Gastrointestinais/imunologia , Tumores do Estroma Gastrointestinal/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Evasão Tumoral/imunologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Células Matadoras Naturais/citologia , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Análise de Sequência de RNA , Transdução de Sinais , Fator de Crescimento Transformador beta/imunologia
3.
Proc Natl Acad Sci U S A ; 120(5): e2201832120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689651

RESUMO

Megaherbivores have pervasive ecological effects. In African rainforests, elephants can increase aboveground carbon, though the mechanisms are unclear. Here, we combine a large unpublished dataset of forest elephant feeding with published browsing preferences totaling nearly 200,000 records covering >800 plant species and with nutritional data for 145 species. Elephants increase carbon stocks by: 1) promoting high wood density trees via preferential browsing on leaves from low wood density species, which are more palatable and digestible; and 2) dispersing seeds of trees that are relatively large and have the highest average wood density among tree guilds based on dispersal mode. Loss of forest elephants could cause an increase in abundance of fast-growing low wood density trees and a 6% to 9% decline in aboveground carbon stocks due to regeneration failure of elephant-dispersed trees. These results demonstrate the importance of megaherbivores for maintaining diverse, high-carbon tropical forests. Successful elephant conservation will contribute to climate mitigation at a globally-relevant scale.


Assuntos
Elefantes , Animais , Carbono/metabolismo , Florestas , Árvores/metabolismo , Clima Tropical , Biomassa
4.
Br J Cancer ; 129(9): 1442-1450, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563222

RESUMO

Colorectal cancer (CRC) is a common and deadly disease. Unfortunately, immune checkpoint inhibitors (ICIs) fail to elicit effective anti-tumour responses in the vast majority of CRC patients. Patients that are most likely to respond are those with DNA mismatch repair deficient (dMMR) and microsatellite instability (MSI) disease. However, reliable predictors of ICI response are lacking, even within the dMMR/MSI subtype. This, together with identification of novel mechanisms to increase response rates and prevent resistance, are ongoing and vitally important unmet needs. To address the current challenges with translation of early research findings into effective therapeutic strategies, this review summarises the present state of preclinical testing used to inform the development of immuno-regulatory treatment strategies for CRC. The shortfalls and advantages of commonly utilised mouse models of CRC, including chemically induced, transplant and transgenic approaches are highlighted. Appropriate use of existing models, incorporation of patient-derived data and development of cutting-edge models that recapitulate important features of human disease will be key to accelerating clinically relevant research in this area.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Animais , Camundongos , Humanos , Pesquisa Translacional Biomédica , Oncologia , Instabilidade de Microssatélites , Reparo de Erro de Pareamento de DNA
5.
J Zoo Wildl Med ; 51(4): 848-855, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33480565

RESUMO

Evaluation of sex ratios is a critical component of chelonian captive breeding programs and may become increasingly useful to assess the demographics of free-living populations. In many reptile species, the sex of immature animals cannot be determined based on external features. Endoscopic sex identification is an accurate and safe method to identify the sex of immature individuals of some chelonian species. A number of studies describe this technique in controlled, hospital settings and report significant interspecies variations in gonad morphology; however, there are few reports describing this technique in field conditions. In the current study, the gonadal morphology of 40 immature Western Santa Cruz tortoises (Chelonoidis porteri) on Santa Cruz Island in Galapagos, Ecuador, was assessed. A previously described endoscopic protocol was used to perform sex identification under field conditions. Tortoises were anesthetized using an intramuscular injection of ketamine (10 mg/kg) and medetomidine (0.1 mg/kg), which provided an adequate plane of anesthesia. The medetomidine was reversed with atipamezole (0.5 mg/kg). Field conditions presented challenges such as limited control over lighting, suboptimal patient positioning, and restricted power supply for endoscopy equipment. The immature testicle in Western Santa Cruz tortoises was oval, reddish pink, and tightly adhered to the coelomic membrane ventral to the kidney. The surface of the gonads resembled other species with the notable exception that the ovaries lacked a significant number of primordial follicles. These gonadal characteristics were consistent, with only one individual identified as undetermined sex of the 40 samples. This field-based endoscopic gonadal evaluation was a safe and sensitive technique for determining the sex of free-living immature Western Santa Cruz Galapagos tortoises.


Assuntos
Anestesia/veterinária , Ovário/anatomia & histologia , Maturidade Sexual , Testículo/anatomia & histologia , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Feminino , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/farmacologia , Ketamina/administração & dosagem , Ketamina/farmacologia , Masculino , Medetomidina/administração & dosagem , Medetomidina/farmacologia , Ovário/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Tartarugas/fisiologia
6.
Ecol Appl ; 28(3): 854-864, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29420867

RESUMO

Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a framework for conservationists to analyze movement data. Functions created for the analyses are available within the R package moveNT.


Assuntos
Ecologia/métodos , Comportamento Espacial , Distribuição Animal , Animais , Cervos , Elefantes , Movimento , Tartarugas
7.
J Anim Ecol ; 86(4): 972-982, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390059

RESUMO

The reasons that lead some animals to seasonally migrate, and others to remain in the same area year-round, are poorly understood. Associations between traits, such as body size, and migration provide clues. For example, larger species and individuals are more likely to migrate. One explanation for this size bias in migration is that larger animals are capable of moving faster (movement hypothesis). However, body size is linked to many other biological processes. For instance, the energetic balances of larger animals are generally more sensitive to variation in food density because of body size effects on foraging and metabolism and this sensitivity could drive migratory decisions (forage hypothesis). Identifying the primary selective forces that drive migration ultimately requires quantifying fitness impacts over the full annual migratory cycle. Here, we develop a full annual migratory cycle model from metabolic and foraging theory to compare the importance of the forage and movement hypotheses. We parameterize the model for Galapagos tortoises, which were recently discovered to be size-dependent altitudinal migrants. The model predicts phenomena not included in model development including maximum body sizes, the body size at which individuals begin to migrate, and the seasonal timing of migration and these predictions generally agree with available data. Scenarios strongly support the forage hypothesis over the movement hypothesis. Furthermore, male Galapagos tortoises on Santa Cruz Island would be unable to grow to their enormous sizes without access to both highlands and lowlands. Whereas recent research has focused on links between traits and the migratory phases of the migratory cycle, we find that effects of body size on the non-migratory phases are far more important determinants of the propensity to migrate. Larger animals are more sensitive to changing forage conditions than smaller animals with implications for maintenance of migration and body size in the face of environmental change.


Assuntos
Migração Animal , Tartarugas , Animais , Tamanho Corporal , Feminino , Masculino , Movimento , Estações do Ano
8.
J Anim Ecol ; 85(5): 1171-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27336221

RESUMO

Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs. We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour - giant Galapagos tortoises (Chelonoidis spp.) - to test how movement metrics estimated on a monthly basis scaled with body size. We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex. Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates. Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one-dimensional scaling of movement, but also generates valuable insights into the movement ecology of iconic yet poorly understood Galapagos giant tortoises.


Assuntos
Tamanho Corporal , Movimento , Tartarugas/fisiologia , Animais , Equador , Feminino , Masculino , Motivação , Filogenia , Fatores Sexuais , Fatores de Tempo
9.
J Zoo Wildl Med ; 47(1): 196-205, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27010280

RESUMO

Reptile hematologic data provide important health information for conservation efforts of vulnerable wildlife species such as the Galapagos tortoise (Chelonoidis spp.). Given the reported discrepancies between manual leukocyte counts for nonmammalian species, two manual leukocyte quantification methods, the Natt and Herrick's (NH) and the Eopette (EO), were compared to white blood cell (WBC) estimates from blood films of 42 free-living, clinically healthy, adult female Galapagos tortoises. To investigate the effects of delay in sample processing, estimated WBC counts and leukocyte differentials were compared for blood films prepared at time of collection under field conditions (T0) to blood films prepared from samples that were stored for 18-23 hr at 4°C in the laboratory (T1). Passing-Bablok regression analysis revealed no constant or proportional error between the NH and WBC estimates (T0 and T1) with slopes of 1.1 and 0.9, respectively. However both constant and proportional errors were present between EO and WBC estimates (T0 and T1) with slopes of 3.1 and 2.7, respectively. Bland Altman plots also showed agreement between the NH and WBC estimates where the points fell within the confidence-interval limit lines and were evenly distributed about the mean. In contrast, the EO and WBC estimate comparisons showed numerous points above the upper limit line, especially at higher concentrations. WBC estimates obtained from T0 and T1 films were in agreement, whereas heterophil and monocyte percentages based on differentials were not. Cell morphology and preservation were superior in T0 blood films because thrombocytes exhibited swelling after storage, becoming difficult to differentiate from lymphocytes. In this study, the highest quality and most reliable hematologic data in Galapagos tortoises were obtained by combining immediate blood film preparation with the NH leukocyte quantification method and a confirmatory WBC estimate from the blood film.


Assuntos
Contagem de Leucócitos/veterinária , Tartarugas/sangue , Animais , Animais Selvagens , Equador , Feminino , Medicina Veterinária/métodos
10.
Immunol Cell Biol ; 92(2): 156-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24217808

RESUMO

Small interfering RNAs (siRNAs) to inhibit oncogene expression and also to activate innate immune responses via Toll-like receptor (TLR) recognition have been shown to be beneficial as anti-cancer therapy in certain cancer models. In this study, we investigated the effects of local versus systemic delivery of such immune-stimulating Dicer-substrate siRNAs (IS-DsiRNAs) on a human papillomavirus (HPV)-driven tumour model. Localized siRNA delivery using intratumour injection of siRNA was able to increase siRNA delivery to the tumour compared with intravenous (IV) delivery and potently activated innate immune responses. However, IV injection remained the more effective delivery route for reducing tumour growth. Although IS-DsiRNAs activated innate immune cells and required interferon-α (IFNα) for full effect on tumour growth, we found that potent silencing siRNA acting independently of IFNα were overall more effective at inhibiting TC-1 tumour growth. Other published work utilising IS-siRNAs have been carried out on tumour models with low levels of major histocompatibility complex (MHC)-class 1, a target of natural killer cells that are potently activated by IS-siRNA. As TC-1 cells used in our study express high levels of MHC-class I, the addition of the immunostimulatory motifs may not be as beneficial in this particular tumour model. Our data suggest that selection of siRNA profile and delivery method based on tumour environment is crucial to developing siRNA-based therapies.


Assuntos
Adjuvantes Imunológicos/farmacologia , Alphapapillomavirus/imunologia , Neoplasias Experimentais/tratamento farmacológico , Infecções por Papillomavirus/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Infecções Tumorais por Vírus/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interferon-alfa/imunologia , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia
11.
Ecol Evol ; 14(2): e10994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357592

RESUMO

Invasive alien species are among the most pervasive threats to biodiversity. Invasive species can cause catastrophic reductions in populations of native and endemic species and the collapse of ecosystem function. A second major global conservation concern is the extirpation of large-bodied mobile animals, including long-distance migrants, which often have keystone ecological roles over extensive spatial extents. Here, we report on a potentially catastrophic synergy between these phenomena that threatens the endemic biota of the Galapagos Archipelago. We used GPS telemetry to track 140 migratory journeys by 25 Western Santa Cruz Island Galapagos tortoises. We plotted the spatial interaction between tortoise migrations and recently established non-native forest dominated by the invasive tree Cedrela odorata (Cedrela forest). We qualified (a) the proportion of migratory journeys that traversed Cedrela forest, and (b) the probability that this observed pattern occurred by chance. Tortoise migrations were overwhelmingly restricted to small corridors between Cedrela forest blocks, indicating clear avoidance of those blocks. Just eight of 140 migrations traversed extensive Cedrela stands. Tortoises avoid Cedrela forest during their migrations. Further expansion of Cedrela forest threatens long-distance migration and population viability of critically endangered Galapagos tortoises. Applied research to determine effective management solutions to mitigate Cedrela invasion is a high priority.

12.
J Anim Ecol ; 82(2): 310-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23171344

RESUMO

Seasonal migration has evolved in many taxa as a response to predictable spatial and temporal variation in the environment. Individual traits, physiology and social state interact with environmental factors to increase the complexity of migratory systems. Despite a huge body of research, the ultimate causes of migration remain unclear. A relatively simple, tractable system - giant tortoises on Santa Cruz Island, Galapagos, was studied to elucidate the roles of environmental variation and individual traits in a partial migratory system. Specifically, we asked: (i) do Galapagos tortoises undergo long-distance seasonal migrations? (ii) is tortoise migration ultimately driven by gradients in forage quality or temperature; and (iii) how do sex and body size influence migration patterns? We recorded the daily locations of 17 GPS-tagged tortoises and walked a monthly survey along the altitudinal gradient to characterize the movements and distribution of tortoises of different sizes and sexes. Monthly temperature and rainfall data were obtained from weather stations deployed at various altitudes, and the Normalized Difference Vegetation Index was used as a proxy for forage quality. Analyses using net displacement or daily movement characteristics did not agree on assigning individuals as either migratory or non-migratory; however, both methods suggested that some individuals were migratory. Adult tortoises of both sexes move up and down an altitudinal gradient in response to changes in vegetation dynamics, not temperature. The largest tagged individuals all moved, whereas only some mid-sized individuals moved, and the smallest individuals never left lowland areas. The timing of movements varied with body size: large individuals moved upward (as lowland forage quality declined) earlier in the year than did mid-sized individuals, while the timing of downward movements was unrelated to body size and occurred as lowland vegetation productivity peaked. Giant tortoises are unlikely candidates for forage-driven migration as they are well buffered against environmental fluctuations by large body size and a slow metabolism. Notably the largest, and presumably most dominant, individuals were most likely to migrate. This characteristic and the lack of sex-based differences in movement behaviour distinguish Galapagos tortoise movement from previously described partial migratory systems.


Assuntos
Plantas , Tartarugas/anatomia & histologia , Tartarugas/fisiologia , Altitude , Migração Animal , Animais , Tamanho Corporal , Regulação da Temperatura Corporal/fisiologia , Demografia , Ecossistema , Comportamento Alimentar , Feminino , Masculino , Modelos Biológicos , Estações do Ano
13.
Nat Rev Immunol ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932511

RESUMO

Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.

14.
Ecol Evol ; 13(4): e10008, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091568

RESUMO

Climate change threatens endemic island ectothermic reptiles that display small population sizes and temperature-dependent sex determination (TSD). Studies of captive Galapagos tortoises demonstrate type A TSD with warmer incubation temperatures producing females. However, there are few published data from free-living Galapagos tortoises on incubation temperature regimes, and none on hatchling sex ratios in the wild or the potential impacts of climate change on future sex ratios. We sought to address these deficits by quantifying incubation temperatures of nests and sex ratios of juvenile tortoises along an elevation gradient on Santa Cruz Island. We focused on three geographically separated nesting zones with mean elevations of 14 m (lower), 57 m (middle), and 107 m (upper) above sea level. Nest temperatures in 54 nests distributed across the three nesting zones were measured every 4 h throughout the incubation period using iButton thermochrons. We used coelioscopy to conduct visual exams of gonads to determine the sex of 40 juvenile tortoises from the three nesting zones. During the middle trimester of incubation, the period during which sex is determined in turtles, mean nest temperatures were 25.75°C (SD = 1.08) in the upper zone, and 27.02°C (SD = 1.09), and 27.09°C (SD = 0.85) in the middle and lower zones, respectively. The proportion of juveniles that was male increased from 11.1% in the lower zone and 9.5% in the middle zone, to 80% in the upper zone. A ca. 50 m increase in elevation induced a decrease of >1.25°C in mean nest temperature during the second trimester of incubation. Over the same elevation change, the proportion of males in the juvenile tortoise population increased by ca. 70%. Temperatures on Galapagos are predicted to increase by 1-4°C over the next 50 years, which is likely to increase the frequency of female tortoises across the archipelago.

15.
Cell Rep Med ; 4(3): 100971, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36871558

RESUMO

Identifying the molecular mechanisms that promote optimal immune responses to coronavirus disease 2019 (COVID-19) vaccination is critical for future rational vaccine design. Here, we longitudinally profile innate and adaptive immune responses in 102 adults after the first, second, and third doses of mRNA or adenovirus-vectored COVID-19 vaccines. Using a multi-omics approach, we identify key differences in the immune responses induced by ChAdOx1-S and BNT162b2 that correlate with antigen-specific antibody and T cell responses or vaccine reactogenicity. Unexpectedly, we observe that vaccination with ChAdOx1-S, but not BNT162b2, induces an adenoviral vector-specific memory response after the first dose, which correlates with the expression of proteins with roles in thrombosis with potential implications for thrombosis with thrombocytopenia syndrome (TTS), a rare but serious adverse event linked to adenovirus-vectored vaccines. The COVID-19 Vaccine Immune Responses Study thus represents a major resource that can be used to understand the immunogenicity and reactogenicity of these COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas , Adulto , Humanos , Adenoviridae/genética , Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , RNA Mensageiro/genética
16.
Immunol Cell Biol ; 90(2): 187-96, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21423261

RESUMO

Oncogene-specific downregulation mediated by RNA interference (RNAi) is a promising avenue for cancer therapy. In addition to specific gene silencing, in vivo RNAi treatment with short interfering RNAs (siRNAs) can initiate immune activation through innate immune receptors including Toll-like receptors, (TLRs) 7 and 8. Two recent studies have shown that activation of innate immunity by addition of tri-phosphate motifs to oncogene-specific siRNAs, or by co-treatment with CpG oligos, can potentiate siRNA antitumor effects. To date, there are no reports on applying such approach against human papillomavirus (HPV)-driven cancers. Here, we characterized the antitumor effects of non-modified siRNAs that can target a specific oncogene and/or recruit the innate immune system against HPV-driven tumors. Following the characterization of silencing efficacy and TLR7 immunostimulatory potential of 15 siRNAs targeting the HPV type 16 E6/E7 oncogenes, we identified a bifunctional siRNA sequence that displayed both potent gene silencing and active immunostimulation effect. In vivo systemic administration of this siRNA resulted in reduced growth of established TC-1 tumors in C57BL/6 mice. Ablation of TLR7 recruitment via 2'O-methyl modification of the oligo backbone reduced these antitumor effects. Further, a highly immunostimulatory, but non-HPV targeting siRNA was also able to exert antitumoral effects although for less prolonged time compared with the bifunctional siRNA. Collectively, our work demonstrates for the first time that siRNA-induced immunostimulation can have antitumoral effects against HPV-driven tumors in vivo, even independent of gene silencing efficacy.


Assuntos
Papillomavirus Humano 16/genética , Glicoproteínas de Membrana/genética , RNA Interferente Pequeno/administração & dosagem , Receptor 7 Toll-Like/genética , Neoplasias do Colo do Útero/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Papillomavirus Humano 16/imunologia , Humanos , Imunização/métodos , Masculino , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia
17.
New Phytol ; 192(4): 898-911, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21899554

RESUMO

Wetlands were the largest source of atmospheric methane (CH(4) ) during the Last Glacial Maximum (LGM), but the sensitivity of this source to exceptionally low atmospheric CO(2) concentration ([CO(2) ]) at the time has not been examined experimentally. We tested the hypothesis that LGM atmospheric [CO(2) ] reduced CH(4) emissions as a consequence of decreased photosynthate allocation to the rhizosphere. We exposed minerotrophic fen and ombrotrophic bog peatland mesocosms to simulated LGM (c. 200 ppm) or ambient (c. 400 ppm) [CO(2) ] over 21 months (n = 8 per treatment) and measured gaseous CH(4) flux, pore water dissolved CH(4) and volatile fatty acid (VFA; an indicator of plant carbon supply to the rhizosphere) concentrations. Cumulative CH(4) flux from fen mesocosms was suppressed by 29% (P < 0.05) and rhizosphere pore water [CH(4) ] by c. 50% (P < 0.01) in the LGM [CO(2) ], variables that remained unaffected in bog mesocosms. VFA analysis indicated that changes in plant root exudates were not the driving mechanism behind these results. Our data suggest that the LGM [CO(2) ] suppression of wetland CH(4) emissions is contingent on trophic status. The heterogeneous response may be attributable to differences in species assemblage that influence the dominant CH(4) production pathway, rhizosphere supplemented photosynthesis and CH(4) oxidation.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Simulação por Computador , Ecossistema , Camada de Gelo/química , Metano/análise , Áreas Alagadas , Ânions , Cátions , Ácidos Graxos Voláteis/análise , Porosidade , Estações do Ano , Temperatura , Água/química
18.
Ecol Appl ; 21(4): 1296-307, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21774431

RESUMO

In many previously remote regions in the world, increasing and often unregulated access is leading to dramatic increases in hunting pressure and declines in the densities of prey species, sometimes to the point of local extinction. Not surprisingly, numerous studies have found a correlation between the distance to the closest access point and prey densities. Here we hypothesized that, for many wide-ranging species, local abundances are reduced by hunting associated with multiple access points as opposed to just the closest access points. We also hypothesized that the distribution of hunter access determines both patterns of occupancy and abundance in occupied areas and that these two patterns (occupancy and abundance) respond to access at different spatial scales. Using data on the distribution of abundances of African forest elephant (Loxodonta africana cyclotis) in and around five national parks in Central Africa, we tested these hypotheses using a model comparison framework. We found that models including an index based on the distance to multiple roads outperformed models including other access-based covariates, including a model based on distance to the closest road only. We also found that models that allowed us to model occupancy and abundance separately outperformed simpler models. Occupancy responds to access at the same scale as previous estimates of average maximum displacement in the subspecies, while the scale of the response of abundance is more ambiguous, but appears to be greater. Lastly, we show that incorporating indices based on multiple access points and modeling abundance and occupancy has important practical consequences for our understanding of overall regional abundances and the distribution of abundances within regions.


Assuntos
Ecossistema , Elefantes/fisiologia , Árvores , África Central , Animais , Conservação dos Recursos Naturais , Modelos Biológicos , Modelos Estatísticos , Densidade Demográfica
19.
J Anim Ecol ; 80(5): 1088-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21521216

RESUMO

1. Large data sets containing precise movement data from free-roaming animals are now becoming commonplace. One means of analysing individual movement data is through discrete, random walk-based models. 2. Random walk models are easily modified to incorporate common features of animal movement, and the ways that these modifications affect the scaling of net displacement are well studied. Recently, ecologists have begun to explore more complex statistical models with multiple latent states, each of which are characterized by a distribution of step lengths and have their own unimodal distribution of turning angles centred on one type of turn (e.g. reversals). 3. Here, we introduce the compound wrapped Cauchy distribution, which allows for multimodal distributions of turning angles within a single state. When used as a single state model, the parameters provide a straightforward summary of the relative contributions of different turn types. The compound wrapped Cauchy distribution can also be used to build multiple state models. 4. We hypothesize that a multiple state model with unimodal distributions of turning angles will best describe movement at finer resolutions, while a multiple state model using our multimodal distribution will better describe movement at intermediate temporal resolutions. At coarser temporal resolutions, a single state model using our multimodal distribution should be sufficient. We parameterize and compare the performance of these models at four different temporal resolutions (1, 4, 12 and 24 h) using data from eight individuals of Loxodonta cyclotis and find support for our hypotheses. 5. We assess the efficacy of the different models in extrapolating to coarser temporal resolution by comparing properties of data simulated from the different models to the properties of the observed data. At coarser resolutions, simulated data sets recreate many aspects of the observed data; however, only one of the models accurately predicts step length, and all models underestimate the frequency of reversals. 6. The single state model we introduce may be adequate to describe movement data at many resolutions and can be interpreted easily. Multiscalar analyses of movement such as the ones presented here are a useful means of identifying inconsistencies in our understanding of movement.


Assuntos
Migração Animal , Elefantes , Modelos Biológicos , Distribuições Estatísticas , Animais , Congo , Ecossistema , Feminino , Gabão , Masculino , Fatores de Tempo
20.
Artigo em Inglês | MEDLINE | ID: mdl-21871577

RESUMO

The retention time of food in the digestive tract of animals has important implications for digestive physiology. Retention time impacts digestive efficiency and among herbivores affects plant-animal interactions including herbivory and seed dispersal. Poorly studied yet iconic Galápagos tortoises are large-bodied generalist herbivores and ecosystem engineers which migrate seasonally. Potentially variable digesta retention times due to strong seasonal and altitudinal temperature gradients may influence tortoise seed dispersal abilities and rates of herbivory. We fed captive adult tortoises living in semi-natural conditions on Galápagos with inert particles and seeds from locally available fruits to determine whether seed size and ambient temperature influenced retention time. Median retention time varied from 6 to 28days, with a mode of 12days. Seed size had no effect on any of our measures of retention time, but ambient temperature was inversely correlated with retention times. Long retention time facilitates long distance seed dispersal by Galápagos tortoises, which may improve effectiveness. The effect of temperature, which may double from hot lowlands to cold highlands through the seasonal cycle, on tortoise digesta retention time will strongly influence seed dispersal efficiency and may influence patterns of food selection and migration in this species.


Assuntos
Digestão/fisiologia , Fenômenos Fisiológicos do Sistema Digestório , Herbivoria/fisiologia , Tartarugas/fisiologia , Animais , Frutas/metabolismo , Estações do Ano , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA