Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 56(8): 1449-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26059978

RESUMO

Macrophage apoptosis and efferocytosis are key determinants of atherosclerotic plaque inflammation and necrosis. Bone marrow transplantation studies in ApoE- and LDLR-deficient mice revealed that hematopoietic scavenger receptor class B type I (SR-BI) deficiency results in severely defective efferocytosis in mouse atherosclerotic lesions, resulting in a 17-fold higher ratio of free to macrophage-associated dead cells in lesions containing SR-BI(-/-) cells, 5-fold more necrosis, 65.2% less lesional collagen content, nearly 7-fold higher dead cell accumulation, and 2-fold larger lesion area. Hematopoietic SR-BI deletion elicited a maladaptive inflammatory response [higher interleukin (IL)-1ß, IL-6, and TNF-α lower IL-10 and transforming growth factor ß]. Efferocytosis of apoptotic thymocytes was reduced by 64% in SR-BI(-/-) versus WT macrophages, both in vitro and in vivo. In response to apoptotic cells, macrophage SR-BI bound with phosphatidylserine and induced Src phosphorylation and cell membrane recruitment, which led to downstream activation of phosphoinositide 3-kinase (PI3K) and Ras-related C3 botulinum toxin substrate 1 (Rac1) for engulfment and clearance of apoptotic cells, as inhibition of Src decreased PI3K, Rac1-GTP, and efferocytosis in WT cells. Pharmacological inhibition of Rac1 reduced macrophage efferocytosis in a SR-BI-dependent fashion, and activation of Rac1 corrected the defective efferocytosis in SR-BI(-/-) macrophages. Thus, deficiency of macrophage SR-BI promotes defective efferocytosis signaling via the Src/PI3K/Rac1 pathway, resulting in increased plaque size, necrosis, and inflammation.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Antígenos CD36/metabolismo , Macrófagos/metabolismo , Fagocitose , Transdução de Sinais , Animais , Apoptose , Aterosclerose/imunologia , Antígenos CD36/deficiência , Antígenos CD36/genética , Sobrevivência Celular , Colágeno/metabolismo , Deleção de Genes , Hematopoese , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilserinas/metabolismo , Transporte Proteico , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
2.
J Lipid Res ; 56(3): 635-643, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25593328

RESUMO

Tissue cholesterol accumulation, macrophage infiltration, and inflammation are features of atherosclerosis and some forms of dermatitis. HDL and its main protein, apoAI, are acceptors of excess cholesterol from macrophages; this process inhibits tissue inflammation. Recent epidemiologic and clinical trial evidence questions the role of HDL and its manipulation in cardiovascular disease. We investigated the effect of ectopic macrophage apoAI expression on atherosclerosis and dermatitis induced by the combination of hypercholesterolemia and absence of HDL in mice. Hematopoietic progenitor cells were transduced to express human apoAI and transplanted into lethally irradiated LDL receptor(-/-)/apoAI(-/-) mice, which were then placed on a high-fat diet for 16 weeks. Macrophage apoAI expression reduced aortic CD4(+) T-cell levels (-39.8%), lesion size (-25%), and necrotic core area (-31.6%), without affecting serum HDL or aortic macrophage levels. Macrophage apoAI reduced skin cholesterol by 39.8%, restored skin morphology, and reduced skin CD4(+) T-cell levels. Macrophage apoAI also reduced CD4(+) T-cell levels (-32.9%) in skin-draining lymph nodes but had no effect on other T cells, B cells, dendritic cells, or macrophages compared with control transplanted mice. Thus, macrophage apoAI expression protects against atherosclerosis and dermatitis by reducing cholesterol accumulation and regulating CD4(+) T-cell levels, without affecting serum HDL or tissue macrophage levels.


Assuntos
Apolipoproteína A-I/biossíntese , Aterosclerose/metabolismo , Dermatite/metabolismo , Hipercolesterolemia/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Animais , Apolipoproteína A-I/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Dermatite/genética , Dermatite/patologia , Dermatite/prevenção & controle , Regulação da Expressão Gênica/genética , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Hipercolesterolemia/prevenção & controle , Lipoproteínas HDL/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout
3.
Circulation ; 127(24): 2403-13, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23690465

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) modulates low-density lipoprotein (LDL) receptor (LDLR) degradation, thus influencing serum cholesterol levels. However, dysfunctional LDLR causes hypercholesterolemia without affecting PCSK9 clearance from the circulation. METHODS AND RESULTS: To study the reciprocal effects of PCSK9 and LDLR and the resultant effects on serum cholesterol, we produced transgenic mice expressing human (h) PCSK9. Although hPCSK9 was expressed mainly in the kidney, LDLR degradation was more evident in the liver. Adrenal LDLR levels were not affected, likely because of the impaired PCSK9 retention in this tissue. In addition, hPCSK9 expression increased hepatic secretion of apolipoprotein B-containing lipoproteins in an LDLR-independent fashion. Expression of hPCSK9 raised serum murine PCSK9 levels by 4.3-fold in wild-type mice and not at all in LDLR(-/-) mice, in which murine PCSK9 levels were already 10-fold higher than in wild-type mice. In addition, LDLR(+/-) mice had a 2.7-fold elevation in murine PCSK9 levels and no elevation in cholesterol levels. Conversely, acute expression of human LDLR in transgenic mice caused a 70% decrease in serum murine PCSK9 levels. Turnover studies using physiological levels of hPCSK9 showed rapid clearance in wild-type mice (half-life, 5.2 minutes), faster clearance in human LDLR transgenics (2.9 minutes), and much slower clearance in LDLR(-/-) recipients (50.5 minutes). Supportive results were obtained with an in vitro system. Finally, up to 30% of serum hPCSK9 was associated with LDL regardless of LDLR expression. CONCLUSIONS: Our results support a scenario in which LDLR represents the main route of elimination of PCSK9 and a reciprocal regulation between these 2 proteins controls serum PCSK9 levels, hepatic LDLR expression, and serum LDL levels.


Assuntos
Colesterol/sangue , Pró-Proteína Convertases/sangue , Receptores de LDL/sangue , Serina Endopeptidases/sangue , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/fisiopatologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/fisiologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Serina Endopeptidases/genética , Serina Endopeptidases/fisiologia , Transfecção
4.
Circulation ; 124(4): 454-64, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21730304

RESUMO

BACKGROUND: We previously demonstrated that macrophage low-density lipoprotein receptor (LDLR)-related protein 1 (LRP1) deficiency increases atherosclerosis despite antiatherogenic changes including decreased uptake of remnants and increased secretion of apolipoprotein E (apoE). Thus, our objective was to determine whether the atheroprotective effects of LRP1 require interaction with apoE, one of its ligands with multiple beneficial effects. METHODS AND RESULTS: We examined atherosclerosis development in mice with specific deletion of macrophage LRP1 (apoE(-/-) MΦLRP1(-/-)) and in LDLR(-/-) mice reconstituted with apoE(-/-) MΦLRP1(-/-) bone marrow. The combined absence of apoE and LRP1 promoted atherogenesis more than did macrophage apoE deletion alone in both apoE-producing LDLR(-/-) mice (+88%) and apoE(-/-) mice (+163%). The lesions of both mouse models with apoE(-/-) LRP1(-/-) macrophages had increased macrophage content. In vitro, apoE and LRP1 additively inhibit macrophage apoptosis. Furthermore, there was excessive accumulation of apoptotic cells in lesions of both LDLR(-/-) mice (+110%) and apoE(-/-) MΦLRP1(-/-) mice (+252%). The apoptotic cell accumulation was partially due to decreased efferocytosis as the ratio of free to cell-associated apoptotic nuclei was 3.5-fold higher in lesions of apoE(-/-) MΦLRP1(-/-) versus apoE(-/-) mice. Lesion necrosis was also increased (6 fold) in apoE(-/-) MΦLRP1(-/-) versus apoE(-/-) mice. Compared with apoE(-/-) mice, the spleens of apoE(-/-) MΦLRP1(-/-) mice contained 1.6- and 2.4-fold more total and Ly6-C(high) monocytes. Finally, there were 3.6- and 2.4-fold increases in Ly6-C(high) and CC-chemokine receptor 2-positive cells in lesions of apoE(-/-) MΦLRP1(-/-) versus apoE(-/-) mice, suggesting that accumulation of apoptotic cells enhances lesion development and macrophage content by promoting the recruitment of inflammatory monocytes. CONCLUSION: Low-density lipoprotein receptor protein 1 exerts antiatherogenic effects via pathways independent of apoE involving macrophage apoptosis and monocyte recruitment.


Assuntos
Apolipoproteínas E/metabolismo , Apoptose , Aterosclerose/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígenos Ly/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Transplante de Medula Óssea , Feminino , Transtornos Leucocíticos/metabolismo , Transtornos Leucocíticos/patologia , Transtornos Leucocíticos/prevenção & controle , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/patologia , Receptores de LDL/genética , Baço/metabolismo , Proteínas Supressoras de Tumor/genética
5.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661763

RESUMO

Autophagy modulates lipid turnover, cell survival, inflammation, and atherogenesis. Scavenger receptor class B type I (SR-BI) plays a crucial role in lysosome function. Here, we demonstrate that SR-BI regulates autophagy in atherosclerosis. SR-BI deletion attenuated lipid-induced expression of autophagy mediators in macrophages and atherosclerotic aortas. Consequently, SR-BI deletion resulted in 1.8- and 2.5-fold increases in foam cell formation and apoptosis, respectively, and increased oxidized LDL-induced inflammatory cytokine expression. Pharmacological activation of autophagy failed to reduce lipid content or apoptosis in Sr-b1-/- macrophages. SR-BI deletion reduced both basal and inducible levels of transcription factor EB (TFEB), a master regulator of autophagy, causing decreased expression of autophagy genes encoding VPS34 and Beclin-1. Notably, SR-BI regulated Tfeb expression by enhancing PPARα activation. Moreover, intracellular macrophage SR-BI localized to autophagosomes, where it formed cholesterol domains resulting in enhanced association of Barkor and recruitment of the VPS34-Beclin-1 complex. Thus, SR-BI deficiency led to lower VPS34 activity in macrophages and in atherosclerotic aortic tissues. Overexpression of Tfeb or Vps34 rescued the defective autophagy in Sr-b1-/- macrophages. Taken together, our results show that macrophage SR-BI regulates autophagy via Tfeb expression and recruitment of the VPS34-Beclin-1 complex, thus identifying previously unrecognized roles for SR-BI and potentially novel targets for the treatment of atherosclerosis.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Espumosas/metabolismo , PPAR alfa/metabolismo , Receptores Depuradores Classe B/metabolismo , Transcrição Gênica , Animais , Doenças da Aorta/genética , Aterosclerose/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteína Beclina-1/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , PPAR alfa/genética , Receptores Depuradores Classe B/deficiência
6.
Nat Commun ; 11(1): 4084, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796843

RESUMO

Lipid peroxidation generates reactive dicarbonyls including isolevuglandins (IsoLGs) and malondialdehyde (MDA) that covalently modify proteins. Humans with familial hypercholesterolemia (FH) have increased lipoprotein dicarbonyl adducts and dysfunctional HDL. We investigate the impact of the dicarbonyl scavenger, 2-hydroxybenzylamine (2-HOBA) on HDL function and atherosclerosis in Ldlr-/- mice, a model of FH. Compared to hypercholesterolemic Ldlr-/- mice treated with vehicle or 4-HOBA, a nonreactive analogue, 2-HOBA decreases atherosclerosis by 60% in en face aortas, without changing plasma cholesterol. Ldlr-/- mice treated with 2-HOBA have reduced MDA-LDL and MDA-HDL levels, and their HDL display increased capacity to reduce macrophage cholesterol. Importantly, 2-HOBA reduces the MDA- and IsoLG-lysyl content in atherosclerotic aortas versus 4-HOBA. Furthermore, 2-HOBA reduces inflammation and plaque apoptotic cells and promotes efferocytosis and features of stable plaques. Dicarbonyl scavenging with 2-HOBA has multiple atheroprotective effects in a murine FH model, supporting its potential as a therapeutic approach for atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose/metabolismo , Benzilaminas/metabolismo , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Hiperlipoproteinemia Tipo II/metabolismo , Receptores de LDL/genética , Animais , Aorta , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Colesterol/sangue , Colesterol/metabolismo , Feminino , Humanos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/patologia , Inflamação/tratamento farmacológico , Peroxidação de Lipídeos , Lipoproteínas HDL/metabolismo , Lipoproteínas IDL/sangue , Lipoproteínas IDL/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos
7.
Arterioscler Thromb Vasc Biol ; 28(8): 1439-46, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18497309

RESUMO

OBJECTIVE: We used genetically engineered mouse hematopoietic progenitor cells (HPCs) to investigate the therapeutic effects of human apoAI on atherosclerosis in apoE(-/-) mice. METHODS AND RESULTS: Lentiviral constructs expressing either human apoAI (LV-apoAI) or green fluorescent protein (LV-GFP) cDNA under a macrophage specific promoter (CD68) were generated and used for ex vivo transduction of mouse HPCs and macrophages. The transduction efficiency was >25% for HPCs and >70% for macrophages. ApoAI was found in the macrophage culture media, mostly associated with the HDL fraction. Interestingly, a significant increase in mRNA and protein levels for ATP binding cassette A1 (ABCA1) and ABCG1 were found in apoAI-expressing macrophages after acLDL loading. Expression of apoAI significantly increased cholesterol efflux in wild-type and apoE(-/-) macrophages. HPCs transduced with LV-apoAI ex vivo and then transplanted into apoE(-/-) mice caused a 50% reduction in atherosclerotic lesion area compared to GFP controls, without influencing plasma HDL-C levels. CONCLUSIONS: Lentiviral transduction of apoAI into HPCs reduces atherosclerosis in apoE(-/-) mice. Expression of apoAI in macrophages improves cholesterol trafficking in wild-type apoE-producing macrophages and causes upregulation of ABCA1 and ABCG1. These novel observations set the stage for a cell therapy approach to atherosclerosis regression, exploiting the cooperation between apoE and apoAI to maximize cholesterol exit from the plaque.


Assuntos
Apolipoproteína A-I/metabolismo , Aterosclerose/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Animais , Aorta/patologia , Apolipoproteína A-I/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Feminino , Lentivirus , Macrófagos/metabolismo , Masculino , Ratos , Transdução Genética/métodos
8.
Nanotechnology ; 20(16): 165102, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19420562

RESUMO

The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE(-/-) mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.


Assuntos
Aterosclerose/patologia , Processamento de Imagem Assistida por Computador/métodos , Pontos Quânticos , Animais , Aterosclerose/imunologia , Sobrevivência Celular , Fluorescência , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Coloração e Rotulagem/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA