RESUMO
Lung cancer (LC) is a leading cause of mortality, claiming more than 1.8 million deaths per year worldwide. Surgery is one of the most effective treatments when the disease is in its early stages. The study of metabolic alterations after surgical intervention with curative intent could be used to assess the response to treatment or the detection of cancer recurrence. In this study, we have evaluated the metabolomic profile of serum samples (n = 110) from preoperative (PRE) and postoperative (POST) LC patients collected at two different time points (1 month, A; 3-6 months, B) with respect to healthy people. An untargeted metabolomic platform based on reversed phase (RP) and hydrophilic interaction chromatography (HILIC), using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry (MS), was applied (MassIVE ID MSV000092213). Twenty-two altered metabolites were annotated by comparing all the different studied groups. DG(14,0/22:1), stearamide, proline, and E,e-carotene-3,3'-dione were found altered in PRE, and their levels returned to those of a baseline control group 3-6 months after surgery. Furthermore, 3-galactosyllactose levels remained altered after intervention in some patients. This study provides unique insights into the metabolic profiles of LC patients after surgery at two different time points by combining complementary analytical methods.
Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/diagnóstico , Recidiva Local de Neoplasia , Metabolômica/métodos , Espectrometria de Massas/métodos , MetabolomaRESUMO
INTRODUCTION: The aim of this study was to develop a surgical risk prediction model in patients undergoing anatomic lung resections from the registry of the Spanish Video-Assisted Thoracic Surgery Group (GEVATS). METHODS: Data were collected from 3,533 patients undergoing anatomic lung resection for any diagnosis between December 20, 2016 and March 20, 2018. We defined a combined outcome variable: death or Clavien Dindo grade IV complication at 90 days after surgery. Univariate and multivariate analyses were performed by logistic regression. Internal validation of the model was performed using resampling techniques. RESULTS: The incidence of the outcome variable was 4.29% (95% CI 3.6-4.9). The variables remaining in the final logistic model were: age, sex, previous lung cancer resection, dyspnea (mMRC), right pneumonectomy, and ppo DLCO. The performance parameters of the model adjusted by resampling were: C-statistic 0.712 (95% CI 0.648-0.750), Brier score 0.042 and bootstrap shrinkage 0.854. CONCLUSIONS: The risk prediction model obtained from the GEVATS database is a simple, valid, and reliable model that is a useful tool for establishing the risk of a patient undergoing anatomic lung resection.
Assuntos
Neoplasias Pulmonares , Cirurgia Torácica , Bases de Dados Factuais , Humanos , Pulmão , Neoplasias Pulmonares/cirurgia , Pneumonectomia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Fatores de RiscoRESUMO
INTRODUCTION: Our study sought to know the current implementation of video-assisted thoracoscopic surgery (VATS) for anatomical lung resections in Spain. We present our initial results and describe the auditing systems developed by the Spanish VATS Group (GEVATS). METHODS: We conducted a prospective multicentre cohort study that included patients receiving anatomical lung resections between 12/20/2016 and 03/20/2018. The main quality controls consisted of determining the recruitment rate of each centre and the accuracy of the perioperative data collected based on six key variables. The implications of a low recruitment rate were analysed for "90-day mortality" and "Grade IIIb-V complications". RESULTS: The series was composed of 3533 cases (1917 VATS; 54.3%) across 33 departments. The centres' median recruitment rate was 99% (25-75th:76-100%), with an overall recruitment rate of 83% and a data accuracy of 98%. We were unable to demonstrate a significant association between the recruitment rate and the risk of morbidity/mortality, but a trend was found in the unadjusted analysis for those centres with recruitment rates lower than 80% (centres with 95-100% rates as reference): grade IIIb-V OR=0.61 (p=0.081), 90-day mortality OR=0.46 (p=0.051). CONCLUSIONS: More than half of the anatomical lung resections in Spain are performed via VATS. According to our results, the centre's recruitment rate and its potential implications due to selection bias, should deserve further attention by the main voluntary multicentre studies of our speciality. The high representativeness as well as the reliability of the GEVATS data constitute a fundamental point of departure for this nationwide cohort.
RESUMO
Background: Previous studies have shown that the arterial wall is a potential source of inflammatory markers in COPD. Here, we sought to compare the expression of acute phase reactants (APRs) in COPD patients and controls both at the local (pulmonary arteries and lung parenchyma) and systemic (peripheral blood leukocytes and plasma) compartments. Methods: Consecutive patients undergoing elective surgery for suspected primary lung cancer were eligible for the study. Patients were categorized either as COPD or control group based on the spirometry results. Pulmonary arteries and lung parenchyma sections, peripheral blood leukocytes, and plasma samples were obtained from all participants. Gene expression levels of C-reactive protein (CRP) and serum amyloid A (SAA1, SAA2, and SAA4) were evaluated in tissue samples and peripheral blood leukocytes by reverse transciption-PCR. Plasma CRP and SAA protein levels were measured by enzyme-linked immunosorbent assays. Proteins were evaluated in paraffin-embedded lung tissues by immunohistochemistry. Results: A total of 40 patients with COPD and 62 controls were enrolled. We did not find significant differences in the gene expression between COPD and control group. Both CRP and SAA were overexpressed in the lung parenchyma compared with pulmonary arteries and peripheral blood leukocytes. The expression of SAA was significantly higher in the lung parenchyma than in the pulmonary artery (2-fold higher for SAA1 and SAA4, P=0.015 and P<0.001, respectively; 8-fold higher for SAA2, P<0.001) and peripheral blood leukocytes (16-fold higher for SAA1, 439-fold higher for SAA2, and 5-fold higher for SAA4; P<0.001). No correlation between plasma levels of inflammatory markers and their expression in the lung and peripheral blood leukocytes was observed. Conclusions: The expression of SAA in lung parenchyma is higher than in pulmonary artery and peripheral blood leukocytes. Notably, no associations were noted between lung expression of APRs and their circulating plasma levels, making the leakage of inflammatory proteins from the lung to the bloodstream unlikely. Based on these results, other potential sources of systemic inflammation in COPD (eg, the liver) need further scrutiny.
Assuntos
Reação de Fase Aguda , Pulmão , Linfócitos/imunologia , Artéria Pulmonar , Doença Pulmonar Obstrutiva Crônica , Proteína Amiloide A Sérica/análise , Proteínas de Fase Aguda/análise , Proteínas de Fase Aguda/imunologia , Reação de Fase Aguda/sangue , Reação de Fase Aguda/imunologia , Correlação de Dados , Feminino , Humanos , Pulmão/imunologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/imunologia , Artéria Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/patologia , Espirometria/métodosRESUMO
BACKGROUND: Conflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer. MATERIALS AND METHODS: A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes-including BDCA1-positive myeloid DCs (mDCs), BDCA3-positive mDCs, and plasmacytoid DCs (pDCs)-and determine their maturation markers (CD40, CD80, CD83, and CD86) in all participants. We also identified follicular DCs (fDCs), Langerhans DCs (LDCs), and pDCs in 42 patients by immunohistochemistry. RESULTS: COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects. CONCLUSIONS: Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.
Assuntos
Biomarcadores/análise , Células Dendríticas/citologia , Pulmão/citologia , Células Mieloides/citologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumar/efeitos adversos , Idoso , Estudos de Casos e Controles , Diferenciação Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Citometria de Fluxo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Pessoa de Meia-Idade , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Doença Pulmonar Obstrutiva Crônica/patologiaRESUMO
INTRODUCTION AND OBJECTIVES: The seventh edition of the TNM classification, together with undeniable advantages, has limitations. The International Association for the Study of Lung Cancer (IASLC) Staging Committee has designed an international prospective study to improve this classification. A group of thoracic surgeons and pulmonologists was established in the Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) Oncology area, and created a registry of new lung cancer (LC) cases to participate in this project. The aim of this paper is to describe the main characteristics of the patients included. MATERIALS AND METHODS: Prospective, observational, multicentre, multiregional data collection (epidemiological, clinical, therapeutic and, especially, anatomical extension) study, according to the IASLC protocol, to analyse its prognostic value. RESULTS: Two thousand, four hundred and nineteen patients (83.6% men) from 28 hospitals were included. Ninety-six percent of the men and 54% of the women were smokers or ex-smokers. Chest/abdominal computed tomography (CT) scanning was performed in over 90% and positron emission tomography (PET)/CT scanning in 51.5% of cases. Among the 1035 patients who underwent surgery, 77% had early stages (ia to iib), and 61.6% of those treated using other methods had stage iv. Respiratory comorbidity was higher in men (47.9% versus 21.4%). The most common histological subtype was adenocarcinoma (34%), especially in non-smoking women (69.5%). CONCLUSIONS: The proportion of women and adenocarcinomas, as well as those resected at an early stage, increased among LC cases in Spain.