RESUMO
Astrocytes comprise half of the cells in the brain. Although astrocytes have traditionally been described as playing a supportive role for neurons, they have recently been recognized as active participants in the development and plasticity of dendritic spines and synapses. Astrocytes can eliminate dendritic spines, induce synapse formation, and regulate neurotransmission and plasticity. Dendritic spine and synapse impairments are features of many neurological disorders, including autism spectrum disorder, schizophrenia, and Alzheimer's disease. In this review we will present evidence from multiple neurological disorders demonstrating that changes in astrocyte-synapse interaction contribute to the pathologies. Genomic analysis has connected altered astrocytic gene expression with synaptic deficits in a number of neurological disorders. Alterations in astrocyte-secreted factors have been implicated in the neuronal morphology and synaptic changes seen in neurodevelopmental disorders, while alteration in astrocytic glutamate uptake is a core feature of multiple neurodegenerative disorders. This evidence clearly demonstrates that maintaining astrocyte-synapse interaction is crucial for normal central nervous system functioning. Obtaining a better understanding of the role of astrocytes at synapses in health and disease will provide a new avenue for future therapeutic targeting.
Assuntos
Astrócitos/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Sinapses/fisiologia , Animais , Espinhas Dendríticas/fisiologia , HumanosRESUMO
Brain ischemia occurs when the blood supply to the brain is interrupted, leading to oxygen and glucose deprivation (OGD). This triggers a cascade of events causing a synaptic accumulation of glutamate. Excessive activation of glutamate receptors results in excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts. The mechanisms that underlie this difference are unclear. Cultured hippocampal neurons respond to OGD with a rapid internalization of AMPA receptor (AMPAR) subunit GluA2, resulting in a switch from GluA2-containing Ca(2+)-impermeable receptors to GluA2-lacking Ca(2+)-permeable subtypes (CP-AMPARs). GluA2 internalization is a critical component of OGD-induced cell death in hippocampal neurons. It is unknown how AMPAR trafficking is affected in cortical neurons following OGD. Here, we show that cultured cortical neurons are resistant to an OGD insult that causes cell death in hippocampal neurons. GluA1 is inserted at the plasma membrane in both cortical and hippocampal neurons in response to OGD. In contrast, OGD causes a rapid endocytosis of GluA2 in hippocampal neurons, which is absent in cortical neurons. These data demonstrate that populations of neurons with different vulnerabilities to OGD recruit distinct cell biological mechanisms in response to insult, and that a crucial aspect of the mechanism leading to OGD-induced cell death is absent in cortical neurons. This strongly suggests that the absence of OGD-induced GluA2 trafficking contributes to the relatively low vulnerability of cortical neurons to ischemia.
Assuntos
Glucose/deficiência , Hipocampo/patologia , Neurônios/metabolismo , Oxigênio/farmacologia , Subunidades Proteicas/metabolismo , Receptores de AMPA/metabolismo , Hipóxia Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Endocitose/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Transporte Proteico/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.
Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Astrócitos/metabolismo , Proteínas de Transporte/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas Nucleares/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Amidas/farmacologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Proteínas de Transporte/genética , Células Cultivadas , Colforsina/farmacologia , Inibidores Enzimáticos/farmacologia , Fibroblastos , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Camundongos , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/metabolismo , Proteínas Nucleares/genética , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Ratos , Tiazóis/farmacologia , Tionas/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia , Vasodilatadores/farmacologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Assuntos
Astrócitos , Plasticidade Neuronal , Neurônios , Acidente Vascular Cerebral , Astrócitos/metabolismo , Humanos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/metabolismo , Neurônios/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Ácido Glutâmico/metabolismo , Sobrevivência Celular , Gliose/metabolismoRESUMO
Rehabilitation is the only current intervention that improves sensorimotor function in ischemic stroke patients, similar to task-specific intensive training in animal models of stroke. Bone marrow mesenchymal stem cells (BM-MSCs)-derived extracellular vesicles (EVs) are promising in restoring brain damage and function in stroke models. Additionally, the non-invasive intranasal route allows EVs to reach the brain and target specific ischemic regions. Yet unclear is how handling might enhance recovery or influence other therapies such as EVs after stroke. We used the transient middle cerebral artery occlusion (MCAO) model of stroke in rats to assess how intensive handling alone, in the form of sensorimotor behavioral tests, or in combination with an intranasal treatment of EVs restored neurological function and ischemic damage. Handled rats were exposed to a battery of sensorimotor tests, including the modified Neurological Severity Score (mNSS), beam balance, corner, grid walking, forelimb placement, and cylinder tests, together with Magnetic Resonance Imaging (MRI) at 2, 7, 14, 21, and 28 days post-stroke (dps). Handled MCAO rats were also exposed to an intranasal multidose or single dose of EVs. Non-handled rats were evaluated only by mNSS and MRI at 2, 28, and 56 dps and were treated with a single intranasal dose of EVs. Our results showed that handling animals after MCAO is necessary for EVs to work at the tested dose and frequency, and that a single cumulative dose of EVs further improves the neurological function recovered during handling. These results show the importance of rehabilitation in combination with other treatments such as EVs, and highlight how extensive behavioral testing might influence functional recovery after stroke.
Assuntos
Vesículas Extracelulares , Infarto da Artéria Cerebral Média , Células-Tronco Mesenquimais , Animais , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Infarto da Artéria Cerebral Média/terapia , Ratos , Células-Tronco Mesenquimais/metabolismo , Humanos , Masculino , Recuperação de Função Fisiológica , Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais/métodos , Ratos Sprague-Dawley , Imageamento por Ressonância Magnética , Células da Medula Óssea/citologia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismoRESUMO
Photothrombosis is one of the techniques available to reproduce ischemic injuries in animal models. Most of the studies that use photothrombosis resort to this technique as it is highly reproducible and minimally invasive to target cortical brain regions, such as the motor or somatosensory areas. However, this technique can be modified and adapted to virtually target any brain region, including deeper tissue. Here, we describe some variations on the traditional protocol to use the photothrombotic technique to target the longitudinal hippocampal vein in the adult mouse and cause an ischemic injury in the hippocampus.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Encéfalo , Isquemia Encefálica/etiologia , Hipocampo , Lobo Parietal , Infarto/complicações , Modelos Animais de Doenças , Acidente Vascular Cerebral/etiologiaRESUMO
Stroke is a condition characterized by sudden deprivation of blood flow to a brain region and defined by different post-injury phases, which involve various molecular and cellular cascades. At an early stage during the acute phase, fast initial cell death occurs, followed by inflammation and scarring. This is followed by a sub-acute or recovery phase when endogenous plasticity mechanisms may promote spontaneous recovery, depending on various factors that are yet to be completely understood. At later time points, stroke leads to greater neurodegeneration compared to healthy controls in both clinical and preclinical studies, this is evident during the chronic phase when recovery slows down and neurodegenerative signatures appear. Astrocytes have been studied in the context of ischemic stroke due to their role in glutamate re-uptake, as components of the neurovascular unit, as building blocks of the glial scar, and synaptic plasticity regulators. All these roles render astrocytes interesting, yet understudied players in the context of stroke-induced neurodegeneration. With this review, we provide a summary of previous research, highlight astrocytes as potential therapeutic targets, and formulate questions about the role of astrocytes in the mechanisms during the acute, sub-acute, and chronic post-stroke phases that may lead to neurorestoration or neurodegeneration.
RESUMO
Chordin-like 1 (Chrdl1) is an astrocyte-secreted protein that regulates synaptic maturation, and limits plasticity via GluA2-containing AMPA receptors (AMPARs). It was demonstrated that Chrdl1 expression is very heterogeneous throughout the brain, and it is enriched in astrocytes in cortical layers 2/3, with peak expression in the visual cortex at postnatal day 14. In response to ischemic stroke, Chrdl1 is upregulated during the acute and sub-acute phases in the peri-infarct region, potentially hindering recovery after stroke. Here, we used photothrombosis to model ischemic stroke in the motor cortex of adult male and female mice. In this study, we demonstrate that elimination of Chrdl1 in a global knock-out mouse reduces apoptotic cell death at early post-stroke stages and prevents ischemia-driven synaptic loss of AMPA receptors at later time points, all contributing to faster motor recovery. This suggests that synapse-regulating astrocyte-secreted proteins such as Chrdl1 have therapeutic potential to aid functional recovery after an ischemic injury.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Masculino , Feminino , Animais , Receptores de AMPA/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
Ischemic injury occurs when the brain is deprived of blood flow, preventing cells from receiving essential nutrients. The injury core is the brain region directly deprived and is surrounded by the peri-infarct area, the region with recovery potential. In the peri-infarct area neurons undergo acute loss of dendritic spines, which modifies synaptic plasticity and determines neuronal survival. Astrocytes can be protective or detrimental to the ischemic injury response depending on the specific stage, yet we lack clear understanding of the underlying mechanisms. Chordin-like 1 (Chrdl1) is an astrocyte-secreted protein that promotes synaptic maturation and limits experience-dependent plasticity in the mouse visual cortex. Given this plasticity-limiting function we asked if Chrdl1 regulates the response to ischemic injury, modelled using photothrombosis (PT). We find that Chrdl1 mRNA is upregulated in astrocytes in the peri-infarct area in both acute and sub-acute phases post-PT. To determine the impact of increased Chrdl1 on the response to PT we analyzed Chrdl1 knock-out mice. We find that absence of Chrdl1 prevents ischemia-induced spine loss in the peri-infarct area and reduces cell death in the core, without impacting gliosis. These findings highlight the important role of astrocyte-secreted proteins in regulating structural plasticity in response to brain ischemic injuries.
Assuntos
Lesões Encefálicas , Isquemia Encefálica , Animais , Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas , Infarto , Peptídeos e Proteínas de Sinalização Intercelular , Isquemia/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismoRESUMO
Astrocytes regulate the formation and function of neuronal synapses via multiple signals; however, what controls regional and temporal expression of these signals during development is unknown. We determined the expression profile of astrocyte synapse-regulating genes in the developing mouse visual cortex, identifying astrocyte signals that show differential temporal and layer-enriched expression. These patterns are not intrinsic to astrocytes, but regulated by visually evoked neuronal activity, as they are absent in mice lacking glutamate release from thalamocortical terminals. Consequently, synapses remain immature. Expression of synapse-regulating genes and synaptic development is also altered when astrocyte signaling is blunted by diminishing calcium release from astrocyte stores. Single-nucleus RNA sequencing identified groups of astrocytic genes regulated by neuronal and astrocyte activity, and a cassette of genes that show layer-specific enrichment. Thus, the development of cortical circuits requires coordinated signaling between astrocytes and neurons, highlighting astrocytes as a target to manipulate in neurodevelopmental disorders.
Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/genética , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismoRESUMO
In the developing brain, immature synapses contain calcium-permeable AMPA glutamate receptors (AMPARs) that are subsequently replaced with GluA2-containing calcium-impermeable AMPARs as synapses stabilize and mature. Here, we show that this essential switch in AMPARs and neuronal synapse maturation is regulated by astrocytes. Using biochemical fractionation of astrocyte-secreted proteins and mass spectrometry, we identified that astrocyte-secreted chordin-like 1 (Chrdl1) is necessary and sufficient to induce mature GluA2-containing synapses to form. This function of Chrdl1 is independent of its role as an antagonist of bone morphogenetic proteins (BMPs). Chrdl1 expression is restricted to cortical astrocytes in vivo, peaking at the time of the AMPAR switch. Chrdl1 knockout (KO) mice display reduced synaptic GluA2 AMPARs, altered kinetics of synaptic events, and enhanced remodeling in an in vivo plasticity assay. Studies have shown that humans with mutations in Chrdl1 display enhanced learning. Thus astrocytes, via the release of Chrdl1, promote GluA2-dependent synapse maturation and thereby limit synaptic plasticity.
Assuntos
Astrócitos/metabolismo , Proteínas do Olho/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Células Cultivadas , Proteínas do Olho/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Ratos Sprague-DawleyRESUMO
Oriented composite nanofibers consisting of porous silicon nanoparticles (pSiNPs) embedded in a polycaprolactone or poly(lactide-co-glycolide) matrix are prepared by spray nebulization from chloroform solutions using an airbrush. The nanofibers can be oriented by an appropriate positioning of the airbrush nozzle, and they can direct growth of neurites from rat dorsal root ganglion neurons. When loaded with the model protein lysozyme, the pSiNPs allow the generation of nanofiber scaffolds that carry and deliver the protein under physiologic conditions (phosphate-buffered saline (PBS), at 37 °C) for up to 60 d, retaining 75% of the enzymatic activity over this time period. The mass loading of protein in the pSiNPs is 36%, and in the resulting polymer/pSiNP scaffolds it is 3.6%. The use of pSiNPs that display intrinsic photoluminescence (from the quantum-confined Si nanostructure) allows the polymer/pSiNP composites to be definitively identified and tracked by time-gated photoluminescence imaging. The remarkable ability of the pSiNPs to protect the protein payload from denaturation, both during processing and for the duration of the long-term aqueous release study, establishes a model for the generation of biodegradable nanofiber scaffolds that can load and deliver sensitive biologics.
Assuntos
Nanofibras , Animais , Nanopartículas , Polímeros , Porosidade , Ratos , Silício , Engenharia Tecidual , Alicerces TeciduaisRESUMO
Distinct neuronal populations show differential sensitivity to global ischemia, with hippocampal CA1 neurons showing greater vulnerability compared to cortical neurons. The mechanisms that underlie differential vulnerability are unclear, and we hypothesize that intrinsic differences in neuronal cell biology are involved. Dendritic spine morphology changes in response to ischemic insults in vivo, but cell type-specific differences and the molecular mechanisms leading to such morphologic changes are unexplored. To directly compare changes in spine size in response to oxygen/glucose deprivation (OGD) in cortical and hippocampal neurons, we used separate and equivalent cultures of each cell type. We show that cortical neurons exhibit significantly greater spine shrinkage compared to hippocampal neurons. Rac1 is a Rho-family GTPase that regulates the actin cytoskeleton and is involved in spine dynamics. We show that Rac1 and the Rac guanine nucleotide exchange factor (GEF) Tiam1 are differentially activated by OGD in hippocampal and cortical neurons. Hippocampal neurons express more Tiam1 than cortical neurons, and reducing Tiam1 expression in hippocampal neurons by shRNA enhances OGD-induced spine shrinkage. Tiam1 knockdown also reduces hippocampal neuronal vulnerability to OGD. This work defines fundamental differences in signalling pathways that regulate spine morphology in distinct neuronal populations that may have a role in the differential vulnerability to ischemia.
Assuntos
Córtex Cerebral/metabolismo , Espinhas Dendríticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Glicemia/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Morte Celular/fisiologia , Córtex Cerebral/patologia , Espinhas Dendríticas/patologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/patologia , Isquemia/patologia , Masculino , Proteínas de Neoplasias/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Oxigênio/metabolismo , Gravidez , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac1 de Ligação ao GTP/genéticaRESUMO
Inhibition of Arp2/3-mediated actin polymerization by PICK1 is a central mechanism to AMPA receptor (AMPAR) internalization and long-term depression (LTD), although the signaling pathways that modulate this process in response to NMDA receptor (NMDAR) activation are unknown. Here, we define a function for the GTPase Arf1 in this process. We show that Arf1-GTP binds PICK1 to limit PICK1-mediated inhibition of Arp2/3 activity. Expression of mutant Arf1 that does not bind PICK1 leads to reduced surface levels of GluA2-containing AMPARs and smaller spines in hippocampal neurons, which occludes subsequent NMDA-induced AMPAR internalization and spine shrinkage. In organotypic slices, NMDAR-dependent LTD of AMPAR excitatory postsynaptic currents is abolished in neurons expressing mutant Arf1. Furthermore, NMDAR stimulation downregulates Arf1 activation and binding to PICK1 via the Arf-GAP GIT1. This study defines Arf1 as a critical regulator of actin dynamics and synaptic function via modulation of PICK1.