RESUMO
Heterotrophic protists are vital in Earth's ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes' evolutionary history and ecological significance in Earth's ecosystems, using testate amoebae as a proxy.
Assuntos
Ecossistema , Fósseis , Processos Heterotróficos , Filogenia , Biodiversidade , Evolução Biológica , Amebozoários/genética , Amebozoários/classificação , Amoeba/genética , Amoeba/classificação , Amoeba/fisiologia , Eucariotos/genética , Eucariotos/classificaçãoRESUMO
Protists, the micro-eukaryotes that are neither plants, animals nor fungi build up the greatest part of eukaryotic diversity on Earth. Yet, their evolutionary histories and patterns are still mostly ignored, and their complexity overlooked. Protists are often assumed to keep stable morphologies for long periods of time (morphological stasis). In this work, we test this paradigm taking Arcellinida testate amoebae as a model. We build a taxon-rich phylogeny based on two mitochondrial (COI and NADH) and one nuclear (SSU) gene, and reconstruct morphological evolution among clades. In addition, we prove the existence of mitochondrial mRNA editing for the COI gene. The trees show a lack of conservatism of shell outlines within the main clades, as well as a widespread occurrence of morphological convergences between far-related taxa. Our results refute, therefore, a widespread morphological stasis, which may be an artefact resulting from low taxon coverage. As a corollary, we also revise the groups systematics, notably by emending the large and highly polyphyletic genus Difflugia. These results lead, amongst others, to the erection of a new infraorder Cylindrothecina, as well as two new genera Cylindrifflugia and Golemanskia.
Assuntos
Amoeba , Amebozoários , Amebozoários/genética , Animais , FilogeniaRESUMO
Eukaryotic microbial diversity is known to be extensive but remains largely undescribed and uncharted. While much of this unknown diversity is composed of inconspicuous flagellates and parasites, larger and morphologically distinct protists are regularly discovered, most notably from poorly studied regions. Here we report a new flagship species of hyalospheniid (Amoebozoa; Arcellinida; Hyalospheniformes) testate amoeba from New Zealand and an unusual story of overlooked description under a preoccupied name and subsequent oversight for nearly one century. Through a process involving The Maori Language Commission, we named the species Apodera angatakere, meaning "a shell with a keel." This species resembles Apodera vas but differs by the presence of a distinctive hollow keel. Cytochrome Oxidase Subunit 1 (COI) sequence data show that this species forms a distinct clade nested within genus Apodera. This conspicuous species is so far known only from New Zealand and is restricted to peatlands. It is one of the few examples of endemic microorganisms from this biodiversity hotspot and biogeographer's paradise. As over 90% of New Zealand's peatlands have been lost since European colonization and much of the remaining surfaces are threatened, Apodera angatakere could be a flagship species not only for microbial biogeography but also for island biodiversity conservation.
Assuntos
Amoeba , Amebozoários , Lobosea , Biodiversidade , Nova ZelândiaRESUMO
Assessing the degree to which climate explains the spatial distributions of different taxonomic and functional groups is essential for anticipating the effects of climate change on ecosystems. Most effort so far has focused on above-ground organisms, which offer only a partial view on the response of biodiversity to environmental gradients. Here including both above- and below-ground organisms, we quantified the degree of topoclimatic control on the occurrence patterns of >1,500 taxa and phylotypes along a c. 3,000 m elevation gradient, by fitting species distribution models. Higher model performances for animals and plants than for soil microbes (fungi, bacteria and protists) suggest that the direct influence of topoclimate is stronger on above-ground species than on below-ground microorganisms. Accordingly, direct climate change effects are predicted to be stronger for above-ground than for below-ground taxa, whereas factors expressing local soil microclimate and geochemistry are likely more important to explain and forecast the occurrence patterns of soil microbiota. Detailed mapping and future scenarios of soil microclimate and microhabitats, together with comparative studies of interacting and ecologically dependent above- and below-ground biota, are thus needed to understand and realistically forecast the future distribution of ecosystems.
Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Microclima , Solo , Microbiologia do SoloRESUMO
Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.
Assuntos
Amoeba/genética , Variação Genética/genética , Filogenia , Animais , Borboletas/genética , Ecossistema , Eucariotos/genética , Especiação Genética , América do Norte , Plantas/genética , Sphagnopsida/crescimento & desenvolvimentoRESUMO
Since the first environmental DNA surveys, entire groups of sequences called "environmental clades" did not have any cultured representative. LKM74 is an amoebozoan clade affiliated to Dermamoebidae, whose presence is pervasively reported in soil and freshwater. We obtained an isolate from soil that we assigned to LKM74 by molecular phylogeny, close related to freshwater clones. We described Mycamoeba gemmipara based on observations made with light- and transmission electron microscopy. It is an extremely small amoeba with typical lingulate shape. Unlike other Dermamoebidae, it lacked ornamentation on its cell membrane, and condensed chromatin formed characteristic patterns in the nucleus. M. gemmipara displayed a unique life cycle: trophozoites formed walled coccoid stages which grew through successive buddings and developed into branched structures holding cysts. These structures, measuring hundreds of micrometres, are built as the exclusive product of osmotrophic feeding. To demonstrate that M. gemmipara is a genuine soil inhabitant, we screened its presence in an environmental soil DNA diversity survey performed on an experimental setup where pig cadavers were left to decompose in soils to follow changes in eukaryotic communities. Mycamoeba gemmipara was present in all samples, although related reads were uncommon underneath the cadaver.
Assuntos
Amebozoários/classificação , Amebozoários/crescimento & desenvolvimento , Meio Ambiente , Estágios do Ciclo de Vida , Filogenia , Amoeba/classificação , Amoeba/citologia , Amebozoários/genética , Amebozoários/ultraestrutura , Animais , Biodiversidade , Cadáver , Membrana Celular , DNA de Protozoário/genética , Água Doce/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microscopia Eletrônica de Transmissão , Organelas/ultraestrutura , RNA Ribossômico 18S/genética , Solo/parasitologia , Suínos/parasitologia , Suíça , Trofozoítos/crescimento & desenvolvimentoRESUMO
The frequently encountered macroscopic slime molds of the genus Ceratiomyxa have long been recognized by mycologists and protistologists for hundreds of years. These organisms are amoebozoan amoebae that live and grow inside and on the surface of decaying wood. When conditions are favorable, they form subaerial sporulating structures called fruiting bodies which take on a variety of forms. These forms are typically some arrangement of column and/or branches, but one is uniquely poroid, forming folds instead. Originally, this poroid morphology was designated as its own species. However, it was not always clear what significance fruiting body morphology held in determining species. Currently, Ceratiomyxa fruticulosa var. porioides, the poroid form, is considered a taxonomic variety of Ceratiomyxa fruticulosa based on morphological designation alone. Despite its long history of observation and study, the genus Ceratiomyxa has been paid little molecular attention to alleviate these morphological issues. We have obtained the first transcriptomes of the taxon C. fruticulosa var. porioides and found single gene phylogenetic and multigene phylogenomic support to separate it from C. fruticulosa. This provides molecular evidence that fruiting body morphology does correspond to species level diversity. Therefore, we formally raise Ceratiomyxa porioides to species level.
Assuntos
Filogenia , Especificidade da Espécie , Transcriptoma , Amebozoários/genética , Amebozoários/classificação , Amebozoários/citologiaRESUMO
New Zealand (NZ) is a well-known hotspot of biodiversity and endemism for macroscopic organisms, but its microbial diversity is comparatively poorly documented. We assembled all records on NZ testate amoebae published since the early 20th century and present a comprehensive taxonomic checklist for NZ. Testate amoebae are reported from six major habitat types across both the North and South Islands of NZ, but the sampling effort is ecologically and geographically biased in favour of wetlands and the South Island. As a result, 93% of all 128 morphotypes recorded in NZ occur in wetlands, 28% are restricted to the South Island, and diversity is greater at higher latitudes. Around 50% of morphotypes have a broad latitudinal distribution across the NZ mainland, whereas 15% have narrow latitudinal ranges. Future research should aim to broaden the geographical and ecological ranges. We predict that our list of NZ testate amoebae will expand substantially with future work, and that the latitudinal diversity gradient will be inverted. We also introduce an interactive, fully illustrated, online Lucid key for the rapid identification of NZ testate amoebae. As many morphospecies are cosmopolitan, this key provides a useful tool for testate amoebae identification in other parts of the world.
Assuntos
Amoeba , Biodiversidade , Lista de Checagem , Ecossistema , Nova ZelândiaRESUMO
Protists dominate eukaryotic diversity and play key functional roles in all ecosystems, particularly by catalyzing carbon and nutrient cycling. To date, however, a comparative analysis of their taxonomic and functional diversity that compares the major ecosystems on Earth (soil, freshwater and marine systems) is missing. Here, we present a comparison of protist diversity based on standardized high throughput 18S rRNA gene sequencing of soil, freshwater and marine environmental DNA. Soil and freshwater protist communities were more similar to each other than to marine protist communities, with virtually no overlap of Operational Taxonomic Units (OTUs) between terrestrial and marine habitats. Soil protists showed higher γ diversity than aquatic samples. Differences in taxonomic composition of the communities led to changes in a functional diversity among ecosystems, as expressed in relative abundance of consumers, phototrophs and parasites. Phototrophs (eukaryotic algae) dominated freshwater systems (49% of the sequences) and consumers soil and marine ecosystems (59% and 48%, respectively). The individual functional groups were composed of ecosystem- specific taxonomic groups. Parasites were equally common in all ecosystems, yet, terrestrial systems hosted more OTUs assigned to parasites of macro-organisms while aquatic systems contained mostly microbial parasitoids. Together, we show biogeographic patterns of protist diversity across major ecosystems on Earth, preparing the way for more focused studies that will help understanding the multiple roles of protists in the biosphere.
Assuntos
Ecossistema , Solo , Biodiversidade , Eucariotos/genética , Água Doce , FilogeniaRESUMO
Arcellinida (lobose testate amoebae) are abundant and diverse in many ecosystems, especially in moist to aquatic environments. Molecular phylogeny has shown that overall test morphology (e.g., spherical or elongate) is generally conserved in Arcellinida lineages, but the taxonomic value of other traits (e.g., size, ornamentation, mixotrophy/heterotrophy metabolism type) has not been systematically evaluated. Morphological and physiological traits that correspond to genetic differences likely represent adaptive traits of ecological significance. We combined high-resolution phylogenetics (NAD9-NAD7 genes) and advanced morphometrics to assess the phylogenetic signal of morphological traits of a group of elongate Difflugia species (Arcellinida). The phylogenetic analyses revealed two clades which could be reliably separated by test size and the presence/absence of mixotrophy. Differences in test size may reflect trophic level, with smaller organisms occupying lower trophic levels. In addition to having larger tests, elongate mixotrophic Difflugia are characterised by wide, flat bases and an inflation of the lower two thirds of their test. These morphological traits may provide additional volume for endosymbionts and/or increased surface area to aid light transmission. Our results showcase greater diversity within the elongate Difflugia and highlight morphological traits of ecological and evolutionary significance.
Assuntos
Amebozoários/classificação , Amebozoários/citologia , Filogenia , Amebozoários/metabolismo , Metabolismo Energético , Infecções por Protozoários/genética , Especificidade da EspécieRESUMO
Molecular data have considerably contributed to building the taxonomy of protists. Recently, the systematics of Hyalospheniidae (Amoebozoa; Tubulinea; Arcellinida) has been widely revised, with implications extending to ecological, biogeographical and evolutionary investigations. Certain taxa, however, still have an uncertain phylogenetic position, including the common and conspicuous species Nebela militaris. A phylogenetic reconstruction of the Hyalospheniidae using partial sequences of the mitochondrial Cytochrome Oxidase Subunit 1 (COI) gene shows that N. militaris does not belong to genus Nebela, but should be placed in its own genus. The morphological singularities (strongly curved pseudostome and a marked notch in lateral view) and phylogenetic placement of our isolates motivated the creation of a new genus: Alabasta gen. nov. Based on their morphology, we include in this genus Nebela kivuense and Nebela longicollis. We discuss the position of genus Alabasta within Hyalospheniidae, and the species that could integrate this new genus based on their morphological characteristics.
Assuntos
Lobosea/classificação , Filogenia , DNA de Protozoário/genética , DNA Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Lobosea/genética , Especificidade da EspécieRESUMO
Molecular phylogeny is an indispensable tool for assessing evolutionary relationships among protists. The most commonly used marker is the small subunit ribosomal RNA gene, a conserved gene present in many copies in the nuclear genomes. However, this marker is not variable enough at a fine-level taxonomic scale, and intra-genomic polymorphism has already been reported. Finding a marker that could be useful at both deep and fine taxonomic resolution levels seemed like a utopic dream. We designed Amoebozoa-specific primers to amplify a region including partial sequences of two subunits of the mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene (NAD9/NAD7). We applied them to arcellinids belonging to distantly related genera (Arcella, Difflugia, Netzelia and Hyalosphenia) and to Arcellinid-rich environmental samples to obtain additional Amoebozoa sequences. Tree topology was congruent with previous phylogenies, all nodes being highly supported, suggesting that this marker is well-suited for deep phylogenies in Arcellinida and perhaps Amoebozoa. Furthermore, it enabled discrimination of close-related taxa. This short genetic marker (ca. 250bp) can therefore be used at different taxonomic levels, due to a fast-varying intergenic region presenting either a small intergenic sequence or an overlap, depending on the species.