Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 18(3): 477-489, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30541869

RESUMO

Acute myeloid leukemia (AML) is an aggressive disease that is characterized by abnormal increase of immature myeloblasts in blood and bone marrow. The FLT3 receptor tyrosine kinase plays an integral role in hematopoiesis, and one third of AML diagnoses exhibit gain-of-function mutations in FLT3, with the juxtamembrane domain internal tandem duplication (ITD) and the kinase domain D835Y variants observed most frequently. Few FLT3 substrates or phosphorylation sites are known, which limits insight into FLT3's substrate preferences and makes assay design particularly challenging. We applied in vitro phosphorylation of a cell lysate digest (adaptation of the Kinase Assay Linked with Phosphoproteomics (KALIP) technique and similar methods) for high-throughput identification of substrates for three FLT3 variants (wild-type, ITD mutant, and D835Y mutant). Incorporation of identified substrate sequences as input into the KINATEST-ID substrate preference analysis and assay development pipeline facilitated the design of several peptide substrates that are phosphorylated efficiently by all three FLT3 kinase variants. These substrates could be used in assays to identify new FLT3 inhibitors that overcome resistant mutations to improve FLT3-positive AML treatment.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Mutação , Proteômica/métodos , Tirosina Quinase 3 Semelhante a fms/metabolismo , Linhagem Celular Tumoral , Ensaios de Triagem em Larga Escala , Humanos , Leucemia Mieloide Aguda/genética , Fosforilação , Domínios Proteicos , Mapas de Interação de Proteínas , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/genética
2.
ACS Chem Biol ; 17(6): 1328-1333, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35653784

RESUMO

Bruton's tyrosine kinase (BTK) is a well-documented target for cancer therapeutics due to its role in B-cell signaling pathways. However, inhibitor design is hindered by lack of tools to assess kinase activity. We used in vitro phosphoproteomics to determine BTK's substrate preferences and applied this information to our updated data processing pipeline, KINATEST-ID 2.1.0. This pipeline generates a position-specific scoring matrix for BTK and a list of candidate synthetic substrates, each given a score. Characterization of selected synthetic substrates demonstrated a correlation between KINATEST-ID 2.1.0 score and biochemical performance in in vitro kinase assays. Additionally, by incorporating a known terbium-chelation motif, we adapted synthetic substrates for use in an antibody-free time-resolved terbium luminescence assay. This assay has applications in high-throughput inhibitor screening.


Assuntos
Luminescência , Térbio , Tirosina Quinase da Agamaglobulinemia , Medições Luminescentes , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
3.
Methods Enzymol ; 626: 375-406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31606083

RESUMO

Tyrosine kinases are important for many cellular processes and disruption of their regulation is a factor in diseases like cancer, therefore they are a major target of anticancer drugs. There are many ways to measure tyrosine kinase activity in cells by monitoring endogenous substrate phosphorylation, or by using peptide substrates and incubating them with cell lysates containing active kinases. However, most of these strategies rely on antibodies and/or are limited in how accurately they model the intracellular environment. In cases in which activity needs to be measured in cells, but endogenous substrates are not known and/or suitable phosphospecific antibodies are not available, cell-deliverable peptide substrates can be an alternative and can provide information on activation and inhibition of kinases in intact, live cells. In this chapter, we review this methodology and provide a protocol for measuring Abl kinase activity in human cells using enzyme-linked immunosorbent assay (ELISA) with a generic antiphosphotyrosine antibody for detection.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Tirosina/metabolismo , Humanos , Células K562 , Fosforilação , Proteínas Proto-Oncogênicas c-abl/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA