RESUMO
BACKGROUND: Lung cancers represent the main cause of cancer related-death worldwide. Recently, immunotherapy alone or in combination with chemotherapy has deeply impacted the therapeutic care leading to an improved overall survival. However, relapse will finally occur, with no efficient second line treatment so far. New therapies development based on the comprehension of resistance mechanisms is necessary. However, the difficulties to obtain tumor samples before and after first line treatment hamper to clearly understand the consequence of these molecules on tumor cells and also to identify adapted second line therapies. METHODS: To overcome this difficulty, we developed multicellular tumor spheroids (MCTS) using characterized Non-Small Cell Lung Cancer (NSCLC) cell lines, monocytes from healthy donors and fibroblasts. MCTS were treated with carboplatin-paclitaxel or -gemcitabine combinations according to clinical administration schedules. The treatments impact was studied using cell viability assay, histological analyses, 3'RNA sequencing, real-time PCR, flow cytometry and confocal microscopy. RESULTS: We showed that treatments induced a decrease in cell viability and strong modifications in the transcriptomic profile notably at the level of pathways involved in DNA damage repair and cell cycle. Interestingly, we also observed a modification of genes expression considered as hallmarks of response to immune check point inhibitors and immunogenicity, particularly an increase in CD274 gene expression, coding for PD-L1. This result was validated at the protein level and shown to be restricted to tumor cells on MCTS containing fibroblasts and macrophages. This increase was also observed in an additional cell line, expressing low basal CD274 level. CONCLUSIONS: This study shows that MCTS are interesting models to study the impact of first line therapies using conditions close to clinical practice and also to identify more adapted second line or concomitant therapies for lung cancer treatment.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia , Esferoides Celulares , Paclitaxel/uso terapêutico , Antígeno B7-H1RESUMO
Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.
Assuntos
Sarampo , Melanoma , Vírus Oncolíticos , Masculino , Humanos , Vírus Oncolíticos/genética , Proteínas de Membrana , Vírus do Sarampo/genética , Melanoma/metabolismo , Linfócitos T CD8-Positivos , Antígenos de Neoplasias , Anticorpos/metabolismo , Células Dendríticas , Sarampo/metabolismoRESUMO
BACKGROUND: As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. MAIN: Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of 'smart' drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. CONCLUSION: This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting "type" for efficient and specific delivery of diverse anticancer therapies.
Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Animais , Terapia Combinada/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Vetores Genéticos/genética , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanotecnologia/métodos , Neoplasias/etiologia , Neoplasias/metabolismo , Resultado do TratamentoRESUMO
CDK6 kinase regulates cell-cycle progression in G1, together with CDK4, but has cell-, tissue- and developmentally distinct functions associated with transcription, angiogenesis and metabolism. Although CDK6 makes an attractive cancer biomarker and target, there are no means of assessing its activity in a complex environment. In this study, we describe the design, engineering and characterisation of a fluorescent peptide biosensor derived from 6-phosphofructokinase that reports on CDK6 kinase activity through sensitive changes in fluorescence intensity. This biosensor can report on CDK6 activity in a dose-dependent fashion, thereby enabling quantification of differences in kinase activity in complex and physiologically relevant environments. Further implementation of this biosensor in different lung and melanoma cell lines, as well as in mesothelioma cell lines derived from patients together with a CDK4 biosensor highlighted differences in kinase activity between CDK6 and CDK4 kinase. This work demonstrates the utility of these selective tools for monitoring two closely related kinases comparatively and simultaneously in the same samples, thereby offering attractive perspectives for diagnostic and therapeutic purposes.
Assuntos
Técnicas Biossensoriais/métodos , Quinase 6 Dependente de Ciclina/metabolismo , Corantes Fluorescentes/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Extratos Celulares/química , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/metabolismo , Mesotelioma/patologia , Peptídeos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Rodaminas/química , Espectrometria de FluorescênciaRESUMO
Extracellular vesicles (EVs), such as exosomes, are critical mediators of intercellular communication between tumor cells and other cells located in the microenvironment but also in more distant sites. Exosomes are small EVs that can carry a variety of molecules, such as lipids, proteins, and non-coding RNA, especially microRNAs (miRNAs). In thoracic cancers, including lung cancers and malignant pleural mesothelioma, EVs contribute to the immune-suppressive tumor microenvironment and to tumor growth and metastasis. In this review, we discuss the recent understanding of how exosomes behave in thoracic cancers and how and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy, with a special focus on exosomal miRNAs.
Assuntos
Vesículas Extracelulares/patologia , Neoplasias Torácicas/patologia , Microambiente Tumoral , Biomarcadores Tumorais/análise , Ensaios Clínicos como Assunto , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs , Prognóstico , Neoplasias Torácicas/diagnóstico , Neoplasias Torácicas/imunologia , Neoplasias Torácicas/terapiaRESUMO
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The discovery of soluble biomarkers with diagnostic/prognostic and/or therapeutic properties would improve therapeutic care of MPM patients. Currently, soluble biomarkers described present weaknesses preventing their use in clinic. This study aimed at evaluating brain-derived neurotrophic factor (BDNF), we previously identified using transcriptomic approach, in MPM. We observed that high BDNF expression, at the mRNA level in tumors or at the protein level in pleural effusions (PE), was a specific hallmark of MPM samples. This protein presented significant but limited diagnostic properties (area under the curve (AUC) = 0.6972, p < 0.0001). Interestingly, high BDNF gene expression and PE concentration were predictive of shorter MPM patient survival (13.0 vs 8.3 months, p < 0.0001, in PE). Finally, BDNF did not affect MPM cell oncogenic properties but was implicated in PE-induced angiogenesis. In conclusion, BDNF appears to be a new interesting biomarker for MPM and could also be a new therapeutic target regarding its implication in angiogenesis.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Mesotelioma/sangue , Mesotelioma/patologia , Neovascularização Patológica/sangue , Neoplasias Pleurais/sangue , Neoplasias Pleurais/patologia , Biomarcadores Tumorais , Fator Neurotrófico Derivado do Encéfalo/genética , Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Mesotelioma/genética , Mesotelioma/mortalidade , Mesotelioma Maligno , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/mortalidade , Prognóstico , RNA Mensageiro/genética , Curva ROCRESUMO
Bright supramolecular fluorescent organic nanoassemblies (FONs), based on strongly polar red-emissive benzothiadiazole fluorophores containing acidic units, are fabricated to serve as theranostic tools with large colloidal stability in the absence of a polymer or surfactant. High architectural cohesion is ensured by the multiple hydrogen-bonding networks, reinforced by the dipolar and hydrophobic interactions developed between the dyes. Such interactions are harnessed to ensure high payload encapsulation and efficient trapping of hydrophobic and hydrogen-bonding drugs like doxorubicin, as shown by steady state and time-resolved measurements. Fine tuning of the drug release in cancer cells is achieved by adjusting the structure and combination of the fluorophore acidic units. Notably delayed drug delivery is observed by confocal microscopy compared to the entrance of hydrosoluble doxorubicin, demonstrating the absence of undesirable burst release outside the cells by using FONs. Since FON-constituting fluorophores exhibit a large emission shift from red to green when dissociating in contact with the lipid cellular content, drug delivery could advantageously be followed by dual-color spectral detection, independently of the drug staining potentiality.
Assuntos
Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polímeros/química , Ligação de Hidrogênio , Microscopia ConfocalRESUMO
Conditions for the metathesis of alkenes in the convergent synthesis of HDAC inhibitors have been improved by continuous catalyst flow injection in the reaction media. Intermediate and target compounds obtained were tested for their ability to induce HDAC inhibition and tubulin acetylation, revealing the key role of the tert-butyloxycarbonyl (BOC) group for more HDAC6 selectivity. Molecular modelling added rationale for this BOC effect.
Assuntos
Alcenos/química , Benzamidas/química , Ésteres do Ácido Fórmico/química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
In vivo histone deacetylase (HDAC) inhibition by vorinostat under clinically acceptable dosing is limited by its poor pharmacokinetics properties. A new type of nontoxic pH-responsive delivery system has been synthesized by ring-opening metathesis polymerization, allowing for the selective distribution of vorinostat in mesothelioma tumors in vivo and subsequent histone reacetylation. The delivery system is synthesized by generic click chemistry, possesses native stealth properties for passive tumor targeting, and does not need additional chemistry for cellular internalization. Although vorinostat alone at 50 mg/kg in mice showed no effect, our new delivery system with 2 mg/kg vorinostat promoted histone reacetylation in tumors without side effects, demonstrating that our strategy improves the activity of this HDAC inihibitor in vivo.
Assuntos
Sistemas de Liberação de Medicamentos , Ácidos Hidroxâmicos/farmacologia , Nanopartículas/química , Polímeros/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Click , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Ácidos Hidroxâmicos/química , Mesotelioma/tratamento farmacológico , Camundongos , Camundongos Nus , Polímeros/química , Transfecção , VorinostatRESUMO
In this study, a total of 22 flavonoids were tested for their HDAC inhibitory activity using fluorimetric and BRET-based assays. Four aurones were found to be active in both assays and showed IC50 values below 20 µM in the enzymatic assay. Molecular modelling revealed that the presence of hydroxyl groups was responsible for good compound orientation within the isoenzyme catalytic site and zinc chelation.
Assuntos
Benzofuranos/química , Inibidores de Histona Desacetilases/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura MolecularRESUMO
Introduction: Most current anti-cancer therapies are associated with major side effects due to a lack of tumor specificity. Appropriate vectorization of drugs using engineered nanovectors is known to increase local concentration of therapeutic molecules in tumors while minimizing their side effects. Mesothelin (MSLN) is a well-known tumor associated antigen overexpressed in many malignancies, in particular in malignant pleural mesothelioma (MPM), and various MSLN-targeting anticancer therapies are currently evaluated in preclinical and clinical assays. In this study, we described, for the first time, the functionalization of fluorescent organic nanoassemblies (NA) with a nanobody (Nb) targeting MSLN for the specific targeting of MSLN expressing MPM cancer cells. Methods: Cell lines from different cancer origin expressing or not MSLN were used. An Nb directed against MSLN was coupled to fluorescent NA using click chemistry. A panel of endocytosis inhibitors was used to study targeted NA internalization by cells. Cancer cells were grown in 2D or 3D and under a flow to evaluate the specificity of the targeted NA. Binding and internalization of the targeted NA were studied using flow cytometry, confocal microscopy and transmission electron microscopy. Results: We show that the targeted NA specifically bind to MSLN-expressing tumor cells. Moreover, such functionalized NA appear to be internalized more rapidly and in significantly larger proportions compared to naked ones in MSLN+ MPM cells, thereby demonstrating both the functionality and interest of the active targeting strategy. We demonstrated that targeted NA are mainly internalized through a clathrin-independent/dynamin-dependent endocytosis pathway and are directed to lysosomes for degradation. A 3D cell culture model based on MSLN-expressing multicellular tumor spheroids reveals NA penetration in the first superficial layers. Conclusion: Altogether, these results open the path to novel anticancer strategies based on MSLN-activated internalization of NA incorporating drugs to promote specific accumulation of active treatments in tumors.
Assuntos
Bioensaio , Mesotelina , Linhagem Celular , Corantes , EndocitoseRESUMO
Radiotherapy represents a major curative treatment for prostate cancer (PCa), but some patients will develop radioresistance (RR) and relapse. The underlying mechanisms remain poorly understood, and miRNAs might be key players in the acquisition and maintenance of RR. Through their encapsulation in small extracellular vesicles (EVs), they can also be relevant biomarkers of radiation response. Using next-generation sequencing, we found that miR-200c-3p was downregulated in PCa RR cells and in their small EVs due to a gain of methylation on its promoter during RR acquisition. We next showed that its exogenous overexpression restores the radiosensitivity of RR cells by delaying DNA repair through the targeting of HP1α. Interestingly, we also observed downregulation of miR-200c-3p expression by DNA methylation in radiation-resistant lung and breast cancer cell lines. In summary, our study demonstrates that the downregulation of miR-200c-3p expression in PCa cells and in their small EVs could help distinguish radioresistant from sensitive tumor cells. This miRNA targets HP1α to delay DNA repair and promote cell death.
Assuntos
Metilação de DNA , Reparo do DNA , MicroRNAs , Neoplasias da Próstata , Tolerância a Radiação , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Reparo do DNA/genética , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Homólogo 5 da Proteína Cromobox , Regulação para Baixo/genéticaRESUMO
Attenuated measles virus (MV) exerts its oncolytic activity in malignant pleural mesothelioma (MPM) cells that lack type-I interferon (IFN-I) production or responsiveness. However, other cells in the tumor microenvironment (TME), such as myeloid cells, possess functional antiviral pathways. In this study, we aimed to characterize the interplay between MV and the myeloid cells in human MPM. We cocultured MPM cell lines with monocytes or macrophages and infected them with MV. We analyzed the transcriptome of each cell type and studied their secretion and phenotypes by high-dimensional flow cytometry. We also measured transgene expression using an MV encoding GFP (MV-GFP). We show that MPM cells drive the differentiation of monocytes into M2-like macrophages. These macrophages inhibit GFP expression in tumor cells harboring a defect in IFN-I production and a functional signaling downstream of the IFN-I receptor, while having minimal effects on GFP expression in tumor cells with defect of responsiveness to IFN-I. Interestingly, inhibition of the IFN-I signaling by ruxolitinib restores GFP expression in tumor cells. Upon MV infection, cocultured macrophages express antiviral pro-inflammatory genes and induce the expression of IFN-stimulated genes in tumor cells. MV also increases the expression of HLA and costimulatory molecules on macrophages and their phagocytic activity. Finally, MV induces the secretion of inflammatory cytokines, especially IFN-I, and PD-L1 expression in tumor cells and macrophages. These results show that macrophages reduce viral proteins expression in some MPM cell lines through their IFN-I production and generate a pro-inflammatory interplay that may stimulate the patient's anti-tumor immune response.
Assuntos
Técnicas de Cocultura , Macrófagos , Vírus do Sarampo , Terapia Viral Oncolítica , Vírus Oncolíticos , Microambiente Tumoral , Humanos , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Microambiente Tumoral/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Vírus Oncolíticos/genética , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Mesotelioma Maligno/patologia , Mesotelioma Maligno/terapia , Interferon Tipo I/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virologia , Diferenciação CelularRESUMO
The search for new drugs fulfilling One Health and Green Chemistry requirements is an urgent call. Here, for the first time, we envisaged developing SAHA analogues by starting from the cashew nutshell liquid (CNSL) agro-industrial waste and employing a metathesis approach. This sustainable combination (comprising principles #7 and #9) allowed a straightforward synthesis of compounds 13-20. All of them were found to not be toxic on HepG2, IMR-32, and L929 cell lines. Then, their potential against major human and animal vector-borne parasitic diseases (VBPDs) was assessed. Compound 13 emerged as a green hit against the trypomastigote forms of T. b. brucei. In silico studies showed that the T. b. brucei HDAC (TbDAC) catalytic pocket could be occupied with a similar binding mode by both SAHA and 13, providing a putative explanation for its antiparasitic mechanism of action (13, EC50 = 0.7 ± 0.2 µM).
RESUMO
Research into new treatments against malignant pleural mesothelioma (MPM) is of great interest, as this aggressive cancer is often resistant to conventional therapies. One potential strategy is the use of epigenetic drugs, such as 5-aza-2'-deoxycytidine (5-azaCdR), a DNA-hypomethylating drug, and valproate (VPA), a histone deacetylase inhibitor (HDACi). Indeed, these drugs not only trigger MPM cell death, but also induce the expression of cancer testis antigens recognized by CD8(+) T cells, such as New York-esophageal cancer-1 (NY-ESO-1). The objective of this study was to assess effects of these drugs on the expression and recognition by CD8(+) T cells of Mucin1 (MUC1), a tumor-associated antigen that is overexpressed by MPM. MPM tumor cell lines were treated with epigenetic drugs, alone or in combination. MUC1 expression by MPM cells, and its recognition by a MUC1-specific CD8(+) T-cell clone, was downregulated by HDACi when used alone or in combination with 5-azaCdR. This effect was not due to a blocking of the HLA class I presentation pathway in treated MPM cells, as NY-ESO-1 induced by 5-azaCdR alone, or with VPA, was recognized by a NY-ESO-1-specific T-cell clone. This study suggests that the choice of tumor antigens could be critical for strategies combining epigenetic drugs with immunotherapy.
Assuntos
Azacitidina/análogos & derivados , Linfócitos T CD8-Positivos/imunologia , Inibidores de Histona Desacetilases/farmacologia , Mesotelioma/imunologia , Mucina-1/imunologia , Ácido Valproico/farmacologia , Antígenos de Neoplasias/imunologia , Azacitidina/farmacologia , Linhagem Celular Tumoral , Decitabina , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Quimioterapia Combinada , Citometria de Fluxo , Humanos , Cinética , Proteínas de Membrana/imunologia , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mucina-1/genética , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não ParamétricasRESUMO
We described a norbornenyl-poly(ethylene oxide) nanoparticles ligand-free generic platform, made fluorescent with straightforward preparation by ring-opening metathesis polymerization (ROMP). Our method allowed to easily obtain a drug delivery system (DDS) with facilitated functionalization by means of azide-alkyne click chemistry and with a high selectivity for the tumor in vivo, while cellular internalization is obtained without cell targeting strategy. We demonstrated that our nanoparticles are internalized by endocytosis and colocalized with acidic intracellular compartments in two models of aggressive tumoral cell lines with low prognostic and limited therapeutic treatments. Our nanoparticles could be of real interest to limit the toxicity and to increase the clinical benefit of drugs suffering rapid clearance and side effects and an alternative for cancers with poorly efficient therapeutic solutions by associating the drug delivery in the tumor tissue with an acid-sensitive release system.
Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Polietilenoglicóis/metabolismo , Adenocarcinoma de Pulmão , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Endocitose , Humanos , Mesotelioma Maligno , Camundongos , Camundongos Nus , Nanopartículas , Transplante de Neoplasias , Polietilenoglicóis/química , Polimerização , PolímerosRESUMO
Introduction: Tumor Associated Macrophages (TAM) are a major component of the tumor environment and their accumulation often correlates with poor prognosis by contributing to local inflammation, inhibition of anti-tumor immune response and resistance to anticancer treatments. In this study, we thus investigated the anti-cancer therapeutic interest to target ChemR23, a receptor of the resolution of inflammation expressed by macrophages, using an agonist monoclonal antibody, αChemR23. Methods: Human GM-CSF, M-CSF and Tumor Associated Macrophage (TAM)-like macrophages were obtained by incubation of monocytes from healthy donors with GM-CSF, M-CSF or tumor cell supernatants (Breast cancer (BC) or malignant pleural mesothelioma (MPM) cells). The effects of αChemR23 on macrophages were studied at the transcriptomic, protein and functional level. Datasets from The Cancer Genome Atlas (TCGA) were used to study CMKLR1 expression, coding for ChemR23, in BC and MPM tumors. In vivo, αChemR23 was evaluated on overall survival, metastasis development and transcriptomic modification of the metastatic niche using a model of resected triple negative breast cancer. Results: We show that ChemR23 is expressed at higher levels in M-CSF and tumor cell supernatant differentiated macrophages (TAM-like) than in GM-CSF-differentiated macrophages. ChemR23 activation triggered by αChemR23 deeply modulates M-CSF and TAM-like macrophages including profile of cell surface markers, cytokine secretion, gene mRNA expression and immune functions. The expression of ChemR23 coding gene (CMKLR1) strongly correlates to TAM markers in human BC tumors and MPM and its histological detection in these tumors mainly corresponds to TAM expression. In vivo, treatment with αChemR23 agonist increased mouse survival and decreased metastasis occurrence in a model of triple-negative BC in correlation with modulation of TAM phenotype in the metastatic niche. Conclusion: These results open an attractive opportunity to target TAM and the resolution of inflammation pathways through ChemR23 to circumvent TAM pro-tumoral effects.
Assuntos
Neoplasias da Mama , Carcinoma , Receptores de Quimiocinas , Animais , Feminino , Humanos , Camundongos , Carcinoma/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos , Fenótipo , Receptores de Quimiocinas/metabolismoRESUMO
OBJECTIVES: Pleural mesothelioma (PM) is a rare disease with dismal outcome. Systemic treatment options include chemotherapy and immunotherapy, but biomarkers for treatment personalization are missing. The only FDA-approved diagnostic biomarker is the soluble mesothelin-related protein (SMRP). Krebs von den Lungen-6 (KL-6) is a human mucin 1 (MUC1) glycoprotein, which has shown diagnostic and prognostic value as a biomarker in other malignancies. The present study investigated whether KL-6 can serve as a diagnostic and/or prognostic biomarker in PM. MATERIALS AND METHODS: Using a fully-automated chemiluminescence enzyme immunoassay (CLEIA) for KL-6 and SMRP, pleural effusion samples from 87 consecutive patients with PM and 25 patients with non-malignant pleural disorders were studied. In addition, KL-6 and SMRP levels were determined in corresponding patient sera, and in an independent validation cohort (n = 122). MUC1 mRNA and protein expression, and KL-6 levels in cell line supernatants were investigated in PM primary cell lines in vitro. RESULTS: PM patients had significantly higher KL-6 levels in pleural effusion than non-malignant controls (AUC 0.78, p < 0.0001). Among PM patients, levels were highest in those with epithelioid or biphasic histologies. There was a strong positive correlation between pleural effusion levels of KL-6 and SMRP (p < 0.0001). KL-6 levels in sera similarly associated with diagnosis of PM, however, to a lesser extent (AUC 0.71, p = 0.008). PM patients with high pleural effusion KL-6 levels (≥303 IU/mL) had significantly better overall survival (OS) compared to those with low KL-6 levels (HR 0.51, p = 0.004). Congruently, high tumor cell MUC1 mRNA expression in primary cell lines associated with prolonged corresponding patient OS (HR 0.35, p = 0.004). These findings were confirmed in an independent validation cohort. CONCLUSION: This is the first study demonstrating KL-6 as a potential novel liquid-based diagnostic and prognostic biomarker in PM.
RESUMO
Non-coding RNAs (ncRNAs) are important regulators of gene expression. They are expressed not only in cells, but also in cell-derived extracellular vesicles (EVs). The mechanisms controlling their loading and sorting remain poorly understood. Here, we investigated the impact of TP53 mutations on the non-coding RNA content of small melanoma EVs. After purification of small EVs from six different patient-derived melanoma cell lines, we characterized them by small RNA sequencing and lncRNA microarray analysis. We found that TP53 mutations are associated with a specific micro and long non-coding RNA content in small EVs. Then, we showed that long and small non-coding RNAs enriched in TP53 mutant small EVs share a common sequence motif, highly similar to the RNA-binding motif of Sam68, a protein interacting with hnRNP proteins. This protein thus may be an interesting partner of p53, involved in the expression and loading of the ncRNAs. To conclude, our data support the existence of cellular mechanisms associate with TP53 mutations which control the ncRNA content of small EVs in melanoma.
RESUMO
The diagnosis of malignant pleural mesothelioma is difficult, with the most common differential diagnoses being benign pleural diseases and metastatic adenocarcinomas (ADCA). To identify novel markers that would be able to improve diagnostic accuracy, we performed a genome-wide gene expression analysis on tumor cell lines established from pleural effusions (malignant pleural mesothelioma and lung ADCA). This analysis led to the identification of genes encoding novel and pertinent cellular and soluble markers, for which the expression was validated by real-time RT-PCR. Immunohistochemical staining of tumor biopsy specimens with anti-type III collagen antibodies showed positive labeling for mesothelioma cells but not for ADCA cells. Using enzyme-linked immunosorbent assay, we showed that the C-C motif chemokine 2 (CCL2) concentration was significantly higher in pleural effusions from patients with mesothelioma (n = 61) than in subjects with ADCA (n = 25) or with benign pleural effusions (n = 15): median (interquartile range) = 2.99 ng/ml (1.76 to 6.01) vs 0.99 ng/ml (0.51 to 1.83) and 1.47 ng/ml (0.80 to 1.56), respectively, P < 0.0001. Conversely, the galectin-3 concentration was lower in mesothelioma: 11.50 ng/ml (6.73 to 23.53) vs 24.74 ng/ml (20.42 to 70.35) and 17.64 ng/ml (14.81 to 24.68), respectively, P < 0.0001. The areas under the curve for CCL2 were 0.8030 and 0.7716 for the differentiation of mesothelioma from ADCA or benign pleural effusions, respectively. Similarly, the areas under the curve obtained for galectin-3 were 0.7980 and 0.6923, respectively. In conclusion, type III collagen, CCL2, and galectin-3 are promising new diagnostic markers for mesothelioma.