Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(17): e17478, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39075965

RESUMO

Gut microbial communities confer protection against natural pathogens in important pollinators from the genera Bombus and Apis. In commercial species B. terrestris and B. impatiens, the microbiota increases their resistance to the common and virulent trypanosomatid parasite Crithidia bombi. However, the mechanisms by which gut microorganisms protect the host are still unknown. Here, we test two hypotheses: microbiota protect the host (1) through stimulation of its immune response or protection of the gut epithelium and (2) by competing for resources with the parasite inside the gut. To test them, we reduced the microbiota of workers and then rescued the microbial community by feeding them with microbiota supplements. We then exposed them to an infectious dose of C. bombi and characterised gene expression and gut microbiota composition. We examined the expression of three antimicrobial peptide genes and Mucin-5AC, a gene with a putative role in gut epithelium protection, using qPCR. Although a protective effect against C. bombi was observed in bumblebees with supplemented microbiota, we did not observe an effect of the microbiota on gene expression that could explain alone the protective effect observed. On the other hand, we found an increased relative abundance of Lactobacillus bacteria within the gut of infected workers and a negative correlation of this genus with Gilliamella and Snodgrassella genera. Therefore, our results point to a displacement of bumblebee endosymbionts by C. bombi that might be caused by competition for space and nutrients between the parasite and the microbiota within the gut.


La microbiota intestinal confiere protección frente a los patógenos naturales en polinizadores importantes de los géneros Bombus y Apis. En concreto, la microbiota de las especies comerciales B. terrestris y B. impatients, incrementa su resistencia frente al parásito tripanosomátido común y virulento Crithidia bombi. Sin embargo, los mecanismos por los cuales los microorganismos protegen al hospedador todavía se desconocen. Aquí probamos dos hipótesis: la microbiota protege al hospedador (1) a través de la estimulación de la respuesta inmunitaria o la protección del epitelio y (2) por competición por los recursos con el parásito dentro del intestino. Para probar estas hipótesis, redujimos la microbiota de obreras y dimos suplementos de microbiota a una parte de ellas. Las expusimos a una dosis infecciosa de C. bombi y caracterizamos la expresión génica y la composición de la microbiota intestinal. Examinamos la expresión de los genes de tres péptidos antimicrobianos (AMPs) y de Mucin­5AC, un gen con un rol putativo en la protección del epitelio intestinal, usando la qPCR. Aunque observamos un efecto protector contra C. bombi en los abejorros suplementados con microbiota, no vimos un efecto en la expresión génica que pudiese explicar por sí solo la protección observada. Por otro lado, encontramos un incremento en la abundancia relativa de bacterias del género Lactobacillus en el intestino de obreras infectadas y una correlación negativa de este género con los géneros Gilliamella y Snodgrassella. Por tanto, nuestros resultados apuntan a un desplazamiento de los endosimbiontes por parte de C. bombi, que podría estar causado por la competición por espacio y nutrientes entre el parásito y la microbiota dentro del intestino.


Assuntos
Crithidia , Microbioma Gastrointestinal , Lactobacillus , Animais , Crithidia/patogenicidade , Crithidia/genética , Abelhas/microbiologia , Abelhas/parasitologia , Lactobacillus/genética
2.
Ecotoxicol Environ Saf ; 264: 115427, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666201

RESUMO

Honey bees health is compromised by many factors such as the use of agrochemicals in agriculture and the various diseases that can affect them. Multiple studies have shown that these factors can interact, producing a synergistic effect that can compromise the viability of honey bees. This study analyses the interactions between different pesticides and the microsporidium Nosema ceranae and their effect on immune and detoxification gene expression, sugar consumption and mortality in the Iberian western honey bee (Apis mellifera iberiensis). For this purpose, workers were infected with N. ceranae and subjected to a sugar-water diet with field concentrations of the pesticides sulfoxaflor, azoxystrobin and glyphosate. Increased sugar intake and altered immune and cytochrome P450 gene expression were observed in workers exposed to sulfoxaflor and infected with N. ceranae. None of the pesticides affected Nosema spore production in honey bee gut. Of the three pesticides tested (alone or in combination) only sulfoxaflor increased mortality in honey bees. Taken together, our results suggest that the effects of sulfoxaflor were attenuated in contact with other pesticides, and that Nosema infection leads to increase sugar intake in sulfoxaflor-exposed bees. Overall, this underlines the importance of studying the interaction between different stressors to understand their overall impact not only on honey bee but also on wild bees health.


Assuntos
Nosema , Praguicidas , Abelhas , Animais , Praguicidas/toxicidade , Agroquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA