Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768265

RESUMO

In the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness. Among fish species, Nile Tilapia is the second-most farmed species in the world and its skin is commonly chosen as a collagen extraction source. However, to the best of our knowledge, no studies have been carried out to investigate, in depth, the age-related differences in fish skin with the final aim of selecting the most advantageous fish size for collagen extraction. In this work, the impact of age on the structural and compositional properties of Tilapia skin was evaluated with the aim of selecting the condition that best lends itself to the extraction of type I collagen for biomedical applications, based on the known fact that the properties of the original tissue have a significant impact on those of the final product. Performed analysis showed statistically significant age-related differences. In particular, an increase in skin thickness (+110 µm) and of wavy-like collagen fiber bundle diameter (+3 µm) besides their organization variation was observed with age. Additionally, a preferred collagen molecule orientation along two specific directions was revealed, with a higher fiber orientation degree according to age. Thermal analysis registered a shift of the endothermic peak (+1.7 °C) and an increase in the enthalpy (+3.3 J/g), while mechanical properties were found to be anisotropic, with an age-dependent brittle behavior. Water (+13%) and ash (+0.6%) contents were found to be directly proportional with age, as opposed to protein (-8%) and lipid (-10%) contents. The amino acid composition revealed a decrease in the valine, leucine, isoleucine, and threonine content and an increase in proline and hydroxyproline. Lastly, fatty acids C14:0, C15:0, C16:1, C18:2n6c, C18:3n6, C18:0, C20:3n3, and C23:0 were revealed to be upregulated, while C18:1n9c was downregulated with age.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/metabolismo , Ciclídeos/metabolismo , Colágeno Tipo I/metabolismo , Ácidos Graxos/metabolismo , Colágeno/metabolismo , Mamíferos
2.
Polymers (Basel) ; 14(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35567034

RESUMO

Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.

3.
Mater Sci Eng C Mater Biol Appl ; 113: 110963, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487384

RESUMO

In the last two decades, marine collagen has attracted great scientific and industrial interest as a 'blue resource', with potential for use in various health-related sectors, such as food, medicine, pharmaceutics and cosmetics. In particular, the large availability of polluting by-products from the fish processing industry has been the key factor driving the research towards the conversion of these low cost by-products (e.g. fish skin and scales) into collagen-based products with high added value and low environmental impact. After addressing the extraction of collagen from aquatic sources and its physicochemical properties, this review focuses on the use of marine collagen and its derivatives (e.g. gelatin and peptides) in different healthcare sectors. Particular attention is given to the bioactive properties of marine collagen that are being explored in preclinical and clinical studies, and pave the way to an increased demand for this biomaterial in the next future. In this context, in addition to the use of native collagen for the development of tissue engineering or wound healing devices, particularly relevant is the use of gelatin and peptides for the development of dietary supplements and nutraceuticals, specifically directed to weight management and glycemic control. The marine collagen market is also briefly discussed to highlight the opportunities and the most profitable areas of interest.


Assuntos
Colágeno/química , Animais , Organismos Aquáticos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno/metabolismo , Colágeno/farmacologia , Cosméticos , Suplementos Nutricionais , Humanos , Estabilidade Proteica , Engenharia Tecidual , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA