Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 143, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664628

RESUMO

BACKGROUND: Broiler chickens are frequently colonized with Extended-Spectrum Beta-Lactamase- (ESBL-) and plasmid mediated AmpC Beta-Lactamase- (pAmpC-) producing Enterobacterales, and we are confronted with the potential spread of these resistant bacteria in the food chain, in the environment, and to humans. Research focused on identifying of transmission routes and investigating potential intervention measures against ESBL- and pAmpC- producing bacteria in the broiler production chain. However, few data are available on the effects of cleaning and disinfection (C&D) procedures in broiler stables on ESBL- and pAmpC- producing bacteria. RESULTS: We systematically investigated five broiler stables before and after C&D and identified potential ESBL- and pAmpC- colonization sites after C&D in the broiler stables, including the anteroom and the nearby surrounding environment of the broiler stables. Phenotypically resistant E. coli isolates grown on MacConkey agar with cefotaxime were further analyzed for their beta-lactam resistance genes and phylogenetic groups, as well as the relation of isolates from the investigated stables before and after C&D by whole genome sequencing. Survival of ESBL- and pAmpC- producing E. coli is highly likely at sites where C&D was not performed or where insufficient cleaning was performed prior to disinfection. For the first time, we showed highly related ESBL-/pAmpC- producing E. coli isolates detected before and after C&D in four of five broiler stables examined with cgMLST. Survival of resistant isolates in investigated broiler stables as well as transmission of resistant isolates from broiler stables to the anteroom and surrounding environment and between broiler farms was shown. In addition, enterococci (frequently utilized to detect fecal contamination and for C&D control) can be used as an indicator bacterium for the detection of ESBL-/pAmpC- E. coli after C&D. CONCLUSION: We conclude that C&D can reduce ESBL-/pAmpC- producing E. coli in conventional broiler stables, but complete ESBL- and pAmpC- elimination does not seem to be possible in practice as several factors influence the C&D outcome (e.g. broiler stable condition, ESBL-/pAmpC- status prior to C&D, C&D procedures used, and biosecurity measures on the farm). A multifactorial approach, combining various hygiene- and management measures, is needed to reduce ESBL-/pAmpC- E. coli in broiler farms.


Assuntos
Proteínas de Bactérias , Galinhas , Desinfecção , Escherichia coli , Fazendas , beta-Lactamases , Animais , beta-Lactamases/genética , beta-Lactamases/metabolismo , Galinhas/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Desinfecção/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Antibacterianos/farmacologia , Filogenia , Plasmídeos/genética , Tipagem de Sequências Multilocus , Sequenciamento Completo do Genoma
2.
J Virol ; 87(9): 5193-204, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449796

RESUMO

Simian foamy viruses (SFVs) are thought to infect virtually any adult nonhuman primate (NHP). While many data have accumulated about patterns of codivergence with their hosts and cross-species transmission events, little is known about the modalities of SFV transmission within NHP species, especially in the wild. Here we provide a detailed investigation of the dynamics of SFV circulation in a wild community of Western chimpanzees (Pan troglodytes verus). We demonstrate that mother-offspring (vertical) SFV transmission is common and hypothesize that it accounts for a number of primary infections. We also show that multiple infections with several chimpanzee-specific SFV strains (i.e., superinfection) commonly happen in adult chimpanzees, which might point to adult-specific aggressive behaviors as a lifelong source of SFV infection. Our data give evidence for complex SFV dynamics in wild chimpanzees, even at a single community scale, and show that linking wild NHP social interactions and their microorganisms' dynamics is feasible.


Assuntos
Doenças dos Símios Antropoides/transmissão , Transmissão Vertical de Doenças Infecciosas/veterinária , Pan troglodytes/virologia , Vírus Espumoso dos Símios/fisiologia , Fatores Etários , Animais , Animais Selvagens/virologia , Doenças dos Símios Antropoides/virologia , Feminino , Masculino , Linhagem , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia
4.
Front Microbiol ; 10: 2124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572330

RESUMO

Extended-spectrum beta-lactamase- (ESBL-) and AmpC beta-lactamase- (AmpC-) producing Enterobacteriaceae pose a risk for both human and animal health. For livestock, highest prevalences have been reported in broiler chickens, which are therefore considered as a reservoir of multidrug-resistant bacteria. The possibility of transfer to humans either by a close contact to colonized broiler flocks or through contaminated retail meat results in the necessity to develop intervention measures for the entire broiler production chain. In this regard, a basic understanding of the colonization process is mandatory including the determination of the minimal bacterial load leading to a persistent colonization of broiler chickens. Therefore, we conducted a bivalent broiler colonization study close to real farming conditions without applying any antimicrobial selection pressure. ESBL- and AmpC- negative broiler chickens (Ross 308) were co- colonized on their third day of life with two strains: one CTX-M-15-producing Escherichia coli-ST410 and one CMY-2/mcr-1-positive E. coli-ST10. Colonization was assessed by cloacal swabs over the period of the trial, starting 24 h post inoculation. During the final necropsy, the contents of crop, jejunum, cecum, and colon were quantified for the occurrence of both bacterial strains. To define the minimal oral colonization dosage 104 to 101 colony forming units (cfu) were orally inoculated to four separately housed broiler groups (each n = 19, all animals inoculated) and a dosage of already 101 cfu E. coli led to a persistent colonization of all animals of the group after 3 days. To assure stable colonization, however, a dosage of 102 cfu E. coli was chosen for the subsequent seeder-bird trial. In the seeder-bird trial one fifth of the animals (seeder, n = 4) were orally inoculated and kept together with the non-inoculated animals (sentinel, n = 16) to mimic the route of natural infection. After 35 days of trial, all animals were colonized with both E. coli strains. Given the low colonization dosage and the low seeder/sentinel ratio, the rapid spread of ESBL- and AmpC- producing Enterobacteriaceae in conventional broiler farms currently seems inevitably resulting in an urgent need for the development of intervention strategies to reduce colonization of broilers during production.

5.
PLoS One ; 7(5): e36570, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590569

RESUMO

While much attention has been focused on the molecular epidemiology of retroviruses in wild primate populations, the correlated question of the frequency and nature of super-infection events, i.e., the simultaneous infection of the same individual host with several strains of the same virus, has remained largely neglected. In particular, methods possibly allowing the investigation of super-infection from samples collected non-invasively (such as faeces) have never been properly compared. Here, we fill in this gap by assessing the costs and benefits of end-point dilution PCR (EPD-PCR) and multiple bulk-PCR cloning, as applied to a case study focusing on simian foamy virus super-infection in wild chimpanzees (Pan troglodytes). We show that, although considered to be the gold standard, EPD-PCR can lead to massive consumption of biological material when only low copy numbers of the target are expected. This constitutes a serious drawback in a field in which rarity of biological material is a fundamental constraint. In addition, we demonstrate that EPD-PCR results (single/multiple infection; founder strains) can be well predicted from multiple bulk-PCR clone experiments, by applying simple statistical and network analyses to sequence alignments. We therefore recommend the implementation of the latter method when the focus is put on retroviral super-infection and only low retroviral loads are encountered.


Assuntos
Doenças dos Símios Antropoides/genética , Pan troglodytes/virologia , Infecções por Retroviridae/genética , Vírus Espumoso dos Símios/genética , Animais , Doenças dos Símios Antropoides/virologia , Reação em Cadeia da Polimerase/métodos , Infecções por Retroviridae/veterinária , Alinhamento de Sequência , Carga Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA