Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 217(4): 1475-1483, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178286

RESUMO

In nonagricultural systems, the relationship between intrinsic water-use efficiency (WUEi ) and leaf nitrogen (Narea ) is known to be stronger for legumes than for nonlegumes. We tested whether these relationships are retained for major agricultural legumes and nonlegumes. We compared the response to N nutrition of WUEi (and its component parts, photosynthesis (Asat ) and stomatal conductance (gs )) for legumes Cicer arietinum, Glycine max, Lupinus alba and Vicia faba, nonlegume dicots Brassica napus and Helianthus annus, and nonlegume cereals Hordeum vulgare and Triticum aestivum. Surprisingly, and in contrast to studied cereals and nonlegume dicots, Narea was positively related to photosynthesis in the legumes, explaining nearly half of the variance in Asat . WUEi was tightly coupled to Narea for agricultural legumes and nonlegume dicots, but not for cereal crops. Our analysis suggests that breeding efforts to reduce gs in legumes could increase WUEi by 120-218% while maintaining Asat at nonlegume values. Physiologically informed breeding of legumes can enhance sustainable agriculture by reducing requirements for water and N.


Assuntos
Produtos Agrícolas/fisiologia , Grão Comestível/fisiologia , Fabaceae/fisiologia , Nitrogênio/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Fabaceae/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Água
2.
J Exp Bot ; 69(3): 349-369, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29370385

RESUMO

Yields of grain legumes are constrained by available water. Thus, it is crucial to understand traits influencing water uptake and the efficiency of using water to produce biomass. Global comparisons and comparisons at specific locations reveal that water use of different grain legumes is very similar, which indicates that water use efficiency varies over a wide range due to differences in biomass and yield. Moreover, yield increases more per millimetre of water used in cool season grain legumes than warm season species. Although greater contrasts have been observed across species and genotypes at the pot and lysimeter level, agronomic factors need to be taken into account when scaling those studies to field-level responses. Conservative water use strategies in grain legumes such as low stomatal conductance as approximated by low photosynthetic carbon isotope discrimination reduces yield potential, whereas temporal adjustments of stomatal conductance within the growing season and in response to environmental factors (such as vapour pressure deficit) helps to optimize the trade-off between carbon gain and water loss. Furthermore, improved photosynthetic capacity, reduced mesophyll conductance, reduced boundary layer, and re-fixation of respired CO2 were identified as traits that are beneficial without water deficit, but also under terminal and transient drought. Genotypic variability in some grain legume species has been observed for several traits that influence water use, water use efficiency, and yield, including root length and the temporal pattern of water use, but even more variation is expected from wild relatives. Albeit that N2 fixation decreases under drought, its impact on water use is still largely unknown, but the nitrogen source influences gas exchange and, thus, transpiration efficiency. This review concludes that conservative traits are needed under conditions of terminal drought to help maintain soil moisture until the pod-filling period, but profligate traits, if tightly regulated, are important under conditions of transient drought in order to profit from short intermittent periods of available soil moisture.


Assuntos
Produtos Agrícolas/fisiologia , Secas , Fabaceae/fisiologia , Características de História de Vida , Água/fisiologia , Grão Comestível/fisiologia
3.
Tree Physiol ; 40(3): 350-366, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31976538

RESUMO

Despite the important role of tropical forest ecosystems in the uptake and storage of atmospheric carbon dioxide (CO2), the carbon (C) dynamics of tropical tree species remains poorly understood, especially regarding belowground roots. This study assessed the allocation of newly assimilated C in the fast-growing pioneer tropical tree species Ceiba pentandra (L.), with a special focus on different root categories. During a 5-day pulse-labelling experiment, 9-month-old (~3.5-m-tall) saplings were labelled with 13CO2 in a large-scale aeroponic facility, which allowed tracing the label in bulk biomass and in non-structural carbohydrates (sugars and starch) as well as respiratory CO2 from the canopy to the root system, including both woody and non-woody roots. A combined logistic and exponential model was used to evaluate 13C mean transfer time and mean residence time (MRT) to the root systems. We found 13C in the root phloem as early as 2 h after the labelling, indicating a mean C transfer velocity of 2.4 ± 0.1 m h-1. Five days after pulse labelling, 27% of the tracers taken up by the trees were found in the leaves and 13% were recovered in the woody tissue of the trunk, 6% in the bark and 2% in the root systems, while 52% were lost, most likely by respiration and exudation. Larger amounts of 13C were found in root sugars than in starch, the former also demonstrating shorter MRT than starch. Of all investigated root categories, non-woody white roots (NRW) showed the largest 13C enrichment and peaked in the deepest NRW (2-3.5 m) as early as 24 ± 2 h after labelling. In contrast to coarse woody brown roots, the sink strength of NRW increased with root depth. The findings of this study improve the understanding of C allocation in young tropical trees and provide unique insights into the changing contributions of woody and non-woody roots to C sink strengths with depth.


Assuntos
Ceiba , Árvores , Dióxido de Carbono , Isótopos de Carbono , Ecossistema , Raízes de Plantas
4.
Front Plant Sci ; 7: 1710, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909442

RESUMO

Drought down-regulates above- and belowground carbon fluxes, however, the resilience of trees to drought will also depend on the speed and magnitude of recovery of these above- and belowground fluxes after re-wetting. Carbon isotope composition of above- and belowground carbon fluxes at natural abundance provides a methodological approach to study the coupling between photosynthesis and soil respiration (SR) under conditions (such as drought) that influence photosynthetic carbon isotope discrimination. In turn, the direct supply of root respiration with recent photoassimilates will impact on the carbon isotope composition of soil-respired CO2. We independently measured shoot and soil CO2 fluxes of beech saplings (Fagus sylvatica L.) and their respective δ13C continuously with laser spectroscopy at natural abundance. We quantified the speed of recovery of drought stressed trees after re-watering and traced photosynthetic carbon isotope signal in the carbon isotope composition of soil-respired CO2. Stomatal conductance responded strongly to the moderate drought (-65%), induced by reduced soil moisture content as well as increased vapor pressure deficit. Simultaneously, carbon isotope discrimination decreased by 8‰, which in turn caused a significant increase in δ13C of recent metabolites (1.5-2.5‰) and in δ13C of SR (1-1.5‰). Generally, shoot and soil CO2 fluxes and their δ13C were in alignment during drought and subsequent stress release, clearly demonstrating a permanent dependence of root respiration on recently fixed photoassimilates, rather than on older reserves. After re-watering, the drought signal persisted longer in δ13C of the water soluble fraction that integrates multiple metabolites (soluble sugars, amino acids, organic acids) than in the neutral fraction which represents most recently assimilated sugars or in the δ13C of SR. Nevertheless, full recovery of all aboveground physiological variables was reached within 4 days - and within 7 days for SR - indicating high resilience of (young) beech against moderate drought.

5.
Isotopes Environ Health Stud ; 51(1): 109-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25664572

RESUMO

Branch or shoot chamber measurements integrate over both foliar and woody tissue carbon dioxide (CO2) fluxes and their associated influences on the carbon isotopic composition of atmospheric/headspace CO2. Here, we quantified the bias introduced by woody tissue carbon isotope fluxes on apparent leaf (13)C discrimination (Δ(13)Capparent) estimates, using laser spectroscopy under controlled conditions. CO2 efflux from woody tissues of defoliated beech saplings in the dark was strongly related to temperature (R(2) = 0.78), which served as the basis to model light-dependent woody tissue photosynthesis (R(2) = 0.72). We then quantified the contributions of leaf and woody tissues to leaf Δ(13)Capparent of foliated beech saplings in the light. Unbiased foliar Δ(13)C was 1.1 to 4.9‰ lower than leaf Δ(13)Capparent, depending on photosynthetic rates of woody tissues. Therefore, we strongly recommend accounting for isotope-related bias due to woody tissues when estimating leaf Δ(13)Capparent based on branch or shoot chamber measurements.


Assuntos
Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Fagus/química , Fagus/metabolismo , Isótopos de Carbono/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo
6.
Tree Physiol ; 35(6): 585-98, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877767

RESUMO

The response of carbon allocation to drought has often been studied in terms of short-term transport velocity of recently fixed carbon from leaves to roots and root respiration. However, its dynamic response to other environmental conditions, e.g., to changes in temperature, is less clear. Here, we investigated the effects of drought, increased temperatures and their combination on transport velocity as well as on distribution of recent photoassimilates for different compounds, such as sugars, starch, organic acids and amino acids. We used a (13)CO(2) pulse-labelling approach and studied the recovery of (13)C in different plant tissues and compounds of beech saplings (Fagus sylvatica L.) during a 9-day chase period. Neither total dry biomass nor dry weights of leaves or roots were affected by drought or increased temperatures. Generally, the fast transfer of recently fixed assimilates from leaves to roots took about 1 day, while (13)C enrichment in soil CO(2) efflux peaked only 2 days after labelling. Increased temperatures prolonged mean transfer times of recent photoassimilates from the leaves to the roots, probably caused by enhanced intermediate storage alongside basipetal transfer, clearly impacting short-term carbon allocation. This temperature effect was seen in the delayed peak in (13)C excess of root sugars, decoupling the roots from the leaves in the short term. On average, ∼40% of the (13)C label initially present in the plant was recovered in the roots (over all treatment combinations), providing strong evidence for preferred carbon allocation into the roots at the end of the growing season. Root starch was the principal compound for long-term storage of carbon, whereas leaf (transitory) starch was remobilized again after some days, exhibiting the longest mean residence times under dry and warm conditions. These observation clearly point to different functionalities of the same compound (i.e., starch) in different plant tissues and the crucial role of roots for long-term carbon storage.


Assuntos
Ciclo do Carbono , Secas , Fagus/fisiologia , Temperatura , Biomassa , Dióxido de Carbono/análise , Isótopos de Carbono , Respiração Celular , Meia-Vida , Floema/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Solo/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA