RESUMO
COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.
Assuntos
Acidose Láctica , Encefalopatias , Cardiomiopatias , Deficiência de Citocromo-c Oxidase , Hepatopatias , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Acidose Láctica/genética , Cardiomiopatias/genética , Deficiência de Citocromo-c Oxidase/genética , Humanos , Recém-Nascido , Proteínas Mitocondriais/metabolismoRESUMO
Hereditary tyrosinemia Type 1 (HT-1) is a rare metabolic disease where the enzyme catalyzing the final step of tyrosine breakdown is defect, leading to accumulation of toxic metabolites. Nitisinone inhibits the degradation of tyrosine and thereby the production of harmful metabolites, however, the concentration of tyrosine also increases. We investigated the relationship between plasma tyrosine concentrations and cognitive functions and how tyrosine levels affected enzyme activities of human tyrosine hydroxylase (TH) and tryptophan hydroxylase 2 (TPH2). Eight Norwegian children between 6 and 18 years with HT-1 were assessed using questionnaires measuring Attention Deficit Hyperactivity Disorder (ADHD)-symptoms and executive functioning. Recent and past levels of tyrosine were measured and the enzyme activities of TH and TPH2 were studied at conditions replicating normal and pathological tyrosine concentrations. We observed a significant positive correlation between mean tyrosine levels and inattention symptoms. While TH exhibited prominent substrate inhibition kinetics, TPH2 activity also decreased at elevated tyrosine levels. Inhibition of both enzymes may impair syntheses of dopamine, noradrenaline, and serotonin in brain tissue. Inattention in treated HT-1 patients may be related to decreased production of these monoamines. Our results support recommendations of strict guidelines on plasma tyrosine levels in HT-1. ADHD-related deficits, particularly inattention, should be monitored in HT-1 patients to determine whether intervention is necessary.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosinemias/metabolismo , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/metabolismo , Criança , Dopamina/metabolismo , Feminino , Humanos , Masculino , Noruega , Prognóstico , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Tirosina/metabolismo , Tirosina 3-Mono-Oxigenase/análise , Tirosina 3-Mono-Oxigenase/sangue , Tirosinemias/sangue , Tirosinemias/fisiopatologiaRESUMO
OBJECTIVE: To investigate the prevalence and natural history of POLG disease in the Norwegian population. METHODS: A national, population-based, retrospective study using demographic, clinical, and genetic data of patients with genetically confirmed POLG disease. The patients were diagnosed between 2002 and 2022, and were included into the Norwegian POLG Patient Registry. Patients were stratified according to age at disease onset (early <12 years, juvenile to adult 12-40 years, late ≥40 years) and resident region. RESULTS: Ninety-one patients were included. The point prevalence of POLG disease was 1:149,253. Birth prevalence was 1:48,780. Median age at clinical onset was 16 years (range: 2 months to 70 years). Onset occurred early in 35% (32 out of 91), juvenile-adult in 55% (50 out of 91) and late in 10% (9 out of 91). A distinct seasonal pattern in disease onset was observed, with 57% (52 out of 91) presenting between May and August. Forty-five patients (49%) had acute exacerbations that required intensive care, and this affected 72% of those in the early-onset group. The mortality rate was 54% (49 out of 91), with a median time from disease onset to death of 3 years (range: 1 month to 36 years). INTERPRETATION: We provide the point prevalence and birth prevalence of POLG disease in the first nationwide study in which epidemiological and clinical data were integrated. Seasonal variations in clinical onset may offer valuable insights into disease mechanisms and modifying factors. The findings from this study are crucial for quantifying the disease burden, and contribute to evidence-based healthcare planning.
Assuntos
DNA Polimerase gama , Humanos , Noruega/epidemiologia , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Idoso , Criança , Pré-Escolar , Lactente , Estudos Retrospectivos , Prevalência , DNA Polimerase gama/genética , Sistema de Registros , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , Idade de Início , Progressão da Doença , Estudos de CoortesRESUMO
Hereditary tyrosinemia type I (HT1) is an autosomal recessive disease caused by a deficiency in human fumarylacetoacetate (FAA) hydrolase (FAH), which is the last enzyme in the catabolic pathway of tyrosine. Several reports suggest that intracellular accumulation of intermediates of tyrosine catabolism, such as FAA and succinylacetone (SA) is important for the pathogenesis in liver and kidney of HT1 patients. In this work, we examined the effect of FAA and SA on DNA glycosylases initiating base excision repair (BER), which is the most important pathway for removing mutagenic DNA base lesions. In vitro assays monitoring DNA glycosylase activities demonstrated that FAA but not SA inhibited base removal. In particular, the Neil1 and Neil2 DNA glycosylases were strongly inhibited, whereas inhibition of Nth1 and Ogg1 were less efficient. These DNA glycosylases initiate excision of a broad range of mutagenic oxidative base lesions. Further, FAA showed a modest inhibitory effect on the activity of the alkylbase DNA glycosylase Aag and no significant inhibition of the uracil DNA glycosylase Ung2. These data indicate that FAA inhibition of DNA glycosylases removing oxidative base lesions in HT1 patients may increase mutagenesis, suggesting an important mechanism for development of hepatocarcinoma and somatic mosaicism.
Assuntos
Acetoacetatos/farmacologia , Reparo do DNA , Tirosinemias/metabolismo , Tirosinemias/patologia , DNA/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Heptanoatos/farmacologia , Humanos , Mutagênese/genética , Tirosinemias/genéticaRESUMO
A total of 28 Norwegians have been diagnosed with hereditary tyrosinaemia type I (HT1) over the last 30 years. In this study, 19 of these patients were investigated. Three novel small deletions were found (NM_000137.1(FAH): c.615delT, p.Phe205LeufsX2, NM_000137.1(FAH): c.744delG, p.Pro249HisfsX55 and NM_000137.1(FAH):c835delC) pGln279ArgfsX25, all of them leading to a change in the reading frame and a premature stop codon. We hereby genetically characterized 51 of the 56 disease-causing alleles, identifying nine different disease-causing mutations in the Norwegian population. We found that 65% of the Norwegian HT1 patients are compound heterozygous for different mutations. Thus, the relatively high incidence of HT1 in Norway of 1 in 74,800 live births is not due to single founder effects or high incidence of parental consanguinity.
Assuntos
Hidrolases/genética , Deleção de Sequência , Tirosinemias/epidemiologia , Tirosinemias/genética , Sequência de Bases , Análise Mutacional de DNA , Éxons , Feminino , Frequência do Gene , Estudos de Associação Genética , Humanos , Incidência , Masculino , Modelos Moleculares , Noruega/epidemiologia , Estrutura Terciária de Proteína , Tirosinemias/enzimologiaRESUMO
In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March 2012 and 29 February 2020, 461,369 newborns were screened for 20 IEMs in addition to phenylketonuria (PKU). Excluding PKU, there were 75 true-positive (TP) (1:6151) and 107 (1:4311) false-positive IEM cases. Twenty-one percent of the TP cases were symptomatic at the time of the NBS results, but in two-thirds, the screening result directed the exact diagnosis. Eighty-two percent of the TP cases had good health outcomes, evaluated in 2020. The yearly positive predictive value was increased from 26% to 54% by the use of the Region 4 Stork post-analytical interpretive tool (R4S)/Collaborative Laboratory Integrated Reports 2.0 (CLIR), second-tier biochemical testing and genetic confirmation using DNA extracted from the original dried blood spots. The incidence of IEMs increased by 46% after eNBS was introduced, predominantly due to the finding of attenuated phenotypes. The next step is defining which newborns would truly benefit from screening at the milder end of the disease spectrum. This will require coordinated international collaboration, including proper case definitions and outcome studies.
RESUMO
Mitochondrial DNA depletion syndromes (MTDPS) represent a clinically and genetically heterogeneous group of autosomal recessive disorders, caused by mutations in genes involved in maintenance of mitochondrial DNA (mtDNA). Biallelic mutations in FBXL4 were recently described to cause encephalomyopathic MTDPS13. The syndrome has infantile onset and presents with hypotonia, feeding difficulties, a pattern of mild facial dysmorphisms, global developmental delay and brain atrophy. Laboratory investigations reveal elevated blood lactate levels, unspecific mitochondrial respiratory chain (MRC) enzyme deficiencies and mtDNA depletion. We report a novel missense variant, c.1442T > C (p.Leu481Pro), in FBXL4 (NM_012160.4) in a Norwegian boy with clinical, biochemical and cerebral MRI characteristics consistent with MTDPS13. The FBXL4 c.1442T > C (p.Leu481Pro) variant was not present in public databases, 149 Norwegian controls nor an in-house database containing whole exome sequencing data from 440 individuals, and it was predicted in silico to be deleterious to the protein function. Activities of MRC enzymes were normal in muscle tissue (complexes I-IV) and cultured skin fibroblasts (complexes I-V) from the patient, but mtDNA depletion was confirmed in muscle, thus supporting the predicted pathogenicity of the FBXL4 c.1442T > C (p.Leu481Pro) variant. On clinical indication of mitochondrial encephalomyopathy, sequencing of FBXL4 should be performed, even when the activity levels of the MRC enzymes are normal.