Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Magn Reson Med ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888139

RESUMO

PURPOSE: To introduce an alternative idea for fat suppression that is suited both for low-field applications where conventional fat-suppression approaches become ineffective due to narrow spectral separation and for applications with strong B0 homogeneities. METHODS: Separation of fat and water is achieved by sweeping the frequency of RF saturation pulses during continuous radial acquisition and calculating frequency-resolved images using regularized iterative reconstruction. Voxel-wise signal-response curves are extracted that reflect tissue's response to RF saturation at different frequencies and allow the classification into fat or water. This information is then utilized to generate water-only composite images. The principle is demonstrated in free-breathing abdominal and neck examinations using stack-of-stars 3D balanced SSFP (bSSFP) and gradient-recalled echo (GRE) sequences at 0.55 and 3T. Moreover, a potential extension toward quantitative fat/water separation is described. RESULTS: Experiments with a proton density fat fraction (PDFF) phantom validated the reliability of fat/water separation using signal-response curves. As demonstrated for abdominal imaging at 0.55T, the approach resulted in more uniform fat suppression without loss of water signal and in improved CSF-to-fat signal ratio. Moreover, the approach provided consistent fat suppression in 3T neck exams where conventional spectrally-selective fat saturation failed due to strong local B0 inhomogeneities. The feasibility of simultaneous fat/water quantification has been demonstrated in a PDFF phantom. CONCLUSION: The proposed principle achieves reliable fat suppression in low-field applications and adapts to high-field applications with strong B0 inhomogeneity. Moreover, the principle potentially provides a basis for developing an alternative approach for PDFF quantification.

2.
NMR Biomed ; : e5180, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775032

RESUMO

Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view. Free-breathing 3D gradient-recalled echo (GRE) water-excited radial stack-of-stars data were acquired in seven healthy volunteers (five males/two females, body mass index: 19.6-24.8 kg/m2) at 7 T using an eight-channel transceive array coil. Two volunteers were also examined at 3 T. In each volunteer, the liver and kidney regions were scanned in two separate acquisitions. To homogenize signal excitation, the time-interleaved acquisition of modes (TIAMO) method was used with personalized pairs of B1 shims, based on a 23-s Cartesian fast low angle shot (FLASH) acquisition. Utilizing free-induction decay navigator signals, respiratory-gated images were reconstructed at a spatial resolution of 0.8 × 0.8 × 1.0 mm3. Two experienced radiologists rated the image quality and the impact of B1 inhomogeneity and motion-related artifacts on multipoint scales. The images of all volunteers showcased effective water excitation and were accurately corrected for respiratory motion. The impact of B1 inhomogeneity on image quality was minimal, underscoring the efficacy of the multitransmit TIAMO shim. The high spatial resolution allowed excellent depiction of small structures such as the adrenal glands, the proximal ureter, the diaphragm, and small blood vessels, although some streaking artifacts persisted in liver image data. In direct comparisons with 3 T performed for two volunteers, 7-T acquisitions demonstrated increases in signal-to-noise ratio of 77% and 58%. Overall, this work demonstrates the feasibility of free-breathing MRI in the upper abdomen at submillimeter spatial resolution at a magnetic field strength of 7 T.

3.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931494

RESUMO

Due to limitations in current motion tracking technologies and increasing interest in alternative sensors for motion tracking both inside and outside the MRI system, in this study we share our preliminary experience with three alternative sensors utilizing diverse technologies and interactions with tissue to monitor motion of the body surface, respiratory-related motion of major organs, and non-respiratory motion of deep-seated organs. These consist of (1) a Pilot-Tone RF transmitter combined with deep learning algorithms for tracking liver motion, (2) a single-channel ultrasound transducer with deep learning for monitoring bladder motion, and (3) a 3D Time-of-Flight camera for observing the motion of the anterior torso surface. Additionally, we demonstrate the capability of these sensors to simultaneously capture motion data outside the MRI environment, which is particularly relevant for procedures like radiation therapy, where motion status could be related to previously characterized cyclical anatomical data. Our findings indicate that the ultrasound sensor can track motion in deep-seated organs (bladder) as well as respiratory-related motion. The Time-of-Flight camera offers ease of interpretation and performs well in detecting surface motion (respiration). The Pilot-Tone demonstrates efficacy in tracking bulk respiratory motion and motion of major organs (liver). Simultaneous use of all three sensors could provide complementary motion information outside the MRI bore, providing potential value for motion tracking during position-sensitive treatments such as radiation therapy.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Respiração , Fígado/diagnóstico por imagem , Fígado/fisiologia , Movimento/fisiologia , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiologia , Algoritmos , Aprendizado Profundo , Movimento (Física) , Ultrassonografia/métodos
4.
Magn Reson Med ; 90(1): 202-210, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36763847

RESUMO

PURPOSE: To describe an inversion-recovery T1 -weighted radial stack-of-stars 3D gradient echo (GRE) sequence with comparable image quality to conventional MP-RAGE and to demonstrate how the radial acquisition scheme can be utilized for additional retrospective motion correction to improve robustness to head motion. METHODS: The proposed sequence, named MP-RAVE, has been derived from a previously described radial stack-of-stars 3D GRE sequence (RAVE) and includes a 180° inversion recovery pulse that is generated once for every stack of radial views. The sequence is combined with retrospective 3D motion correction to improve robustness. The effectiveness has been evaluated in phantoms and healthy volunteers and compared to conventional MP-RAGE acquisition. RESULTS: MP-RAGE and MP-RAVE anatomical images were rated "good" to "excellent" in overall image quality, with artifact level between "mild" and "no artifacts", and with no statistically significant difference between methods. During head motion, MP-RAVE showed higher inherent robustness with artifacts confined to local brain regions. In combination with motion correction, MP-RAVE provided noticeably improved image quality during different head motion and showed statistically significant improvement in image sharpness. CONCLUSION: MP-RAVE provides comparable image quality and contrast to conventional MP-RAGE with improved robustness to head motion. In combination with retrospective 3D motion correction, MP-RAVE can be a useful alternative to MP-RAGE, especially in non-cooperative or pediatric patients.


Assuntos
Meios de Contraste , Imageamento Tridimensional , Humanos , Criança , Estudos Retrospectivos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
5.
Magn Reson Med ; 89(5): 1931-1944, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36594436

RESUMO

PURPOSE: To increase the effectiveness of respiratory gating in radial stack-of-stars MRI, particularly when imaging at high spatial resolutions or with multiple echoes. METHODS: Free induction decay (FID) navigators were integrated into a three-dimensional gradient echo radial stack-of-stars pulse sequence. These navigators provided a motion signal with a high temporal resolution, which allowed single-spoke binning (SSB): each spoke at each phase encode step was sorted individually to the corresponding motion state of the respiratory signal. SSB was compared with spoke-angle binning (SAB), in which all phase encode steps of one projection angle were sorted without the use of additional navigator data. To illustrate the benefit of SSB over SAB, images of a motion phantom and of six free-breathing volunteers were reconstructed after motion-gating using either method. Image sharpness was quantitatively compared using image gradient entropies. RESULTS: The proposed method resulted in sharper images of the motion phantom and free-breathing volunteers. Differences in gradient entropy were statistically significant (p = 0.03) in favor of SSB. The increased accuracy of motion-gating led to a decrease of streaking artifacts in motion-gated four-dimensional reconstructions. To consistently estimate respiratory signals from the FID-navigator data, specific types of gradient spoiler waveforms were required. CONCLUSION: SSB allowed high-resolution motion-corrected MR imaging, even when acquiring multiple gradient echo signals or large acquisition matrices, without sacrificing accuracy of motion-gating. SSB thus relieves restrictions on the choice of pulse sequence parameters, enabling the use of motion-gated radial stack-of-stars MRI in a broader domain of clinical applications.


Assuntos
Artefatos , Interpretação de Imagem Assistida por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Movimento (Física) , Respiração , Imageamento Tridimensional/métodos
6.
Magn Reson Med ; 86(1): 97-114, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33580909

RESUMO

PURPOSE: This study aimed to (i) develop Magnetization-Prepared Golden-angle RAdial Sparse Parallel (MP-GRASP) MRI using a stack-of-stars trajectory for rapid free-breathing T1 mapping and (ii) extend MP-GRASP to multi-echo acquisition (MP-Dixon-GRASP) for fat/water-separated (water-specific) T1 mapping. METHODS: An adiabatic non-selective 180° inversion-recovery pulse was added to a gradient-echo-based golden-angle stack-of-stars sequence for magnetization-prepared 3D single-echo or 3D multi-echo acquisition. In combination with subspace-based GRASP-Pro reconstruction, the sequence allows for standard T1 mapping (MP-GRASP) or fat/water-separated T1 mapping (MP-Dixon-GRASP), respectively. The accuracy of T1 mapping using MP-GRASP was evaluated in a phantom and volunteers (brain and liver) against clinically accepted reference methods. The repeatability of T1 estimation was also assessed in the phantom and volunteers. The performance of MP-Dixon-GRASP for water-specific T1 mapping was evaluated in a fat/water phantom and volunteers (brain and liver). RESULTS: ROI-based mean T1 values are correlated between the references and MP-GRASP in the phantom (R2 = 1.0), brain (R2 = 0.96), and liver (R2 = 0.73). MP-GRASP achieved good repeatability of T1 estimation in the phantom (R2 = 1.0), brain (R2 = 0.99), and liver (R2 = 0.82). Water-specific T1 is different from in-phase and out-of-phase composite T1 (composite T1 when fat and water signal are mixed in phase or out of phase) both in the phantom and volunteers. CONCLUSION: This work demonstrated the initial performance of MP-GRASP and MP-Dixon-GRASP MRI for rapid 3D T1 mapping and 3D fat/water-separated T1 mapping in the brain (without motion) and in the liver (during free breathing). With fat/water-separated T1 estimation, MP-Dixon-GRASP could be potentially useful for imaging patients with fatty-liver diseases.


Assuntos
Imageamento por Ressonância Magnética , Água , Humanos , Imageamento Tridimensional , Fígado , Imagens de Fantasmas , Respiração
7.
Magn Reson Med ; 85(5): 2672-2685, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33306216

RESUMO

PURPOSE: To describe an approach for detection of respiratory signals using a transmitted radiofrequency (RF) reference signal called Pilot-Tone (PT) and to use the PT signal for creation of motion-resolved images based on 3D stack-of-stars imaging under free-breathing conditions. METHODS: This work explores the use of a reference RF signal generated by a small RF transmitter, placed outside the MR bore. The reference signal is received in parallel to the MR signal during each readout. Because the received PT amplitude is modulated by the subject's breathing pattern, a respiratory signal can be obtained by detecting the strength of the received PT signal over time. The breathing-induced PT signal modulation can then be used for reconstructing motion-resolved images from free-breathing scans. The PT approach was tested in volunteers using a radial stack-of-stars 3D gradient echo (GRE) sequence with golden-angle acquisition. RESULTS: Respiratory signals derived from the proposed PT method were compared to signals from a respiratory cushion sensor and k-space-center-based self-navigation under different breathing conditions. Moreover, the accuracy was assessed using a modified acquisition scheme replacing the golden-angle scheme by a zero-angle acquisition. Incorporating the PT signal into eXtra-Dimensional (XD) motion-resolved reconstruction led to improved image quality and clearer anatomical depiction of the lung and liver compared to k-space-center signal and motion-averaged reconstruction, when binned into 6, 8, and 10 motion states. CONCLUSION: PT is a novel concept for tracking respiratory motion. Its small dimension (8 cm), high sampling rate, and minimal interaction with the imaging scan offers great potential for resolving respiratory motion.


Assuntos
Artefatos , Técnicas de Imagem de Sincronização Respiratória , Humanos , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Movimento (Física) , Respiração
8.
J Nucl Cardiol ; 28(5): 2194-2204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-31898004

RESUMO

BACKGROUND: Hybrid PET/MR imaging has significant potential in cardiology due to its combination of molecular PET imaging and cardiac MR. Multi-tissue-class MR-based attenuation correction (MRAC) is necessary for accurate PET quantification. Moreover, for thoracic PET imaging, respiration is known to lead to misalignments of MRAC and PET data that result in PET artifacts. These factors can be addressed by using multi-echo MR for tissue segmentation and motion-robust or motion-gated acquisitions. However, the combination of these strategies is not routinely available and can be prone to errors. In this study, we examine the qualitative and quantitative impacts of multi-class MRAC compared to a more widely available simple two-class MRAC for cardiac PET/MR. METHODS AND RESULTS: In a cohort of patients with cardiac sarcoidosis, we acquired MRAC data using multi-echo radial gradient-echo MR imaging. Water-fat separation was used to produce attenuation maps with up to 4 tissue classes including water-based soft tissue, fat, lung, and background air. Simultaneously acquired 18F-fluorodeoxyglucose PET data were subsequently reconstructed using each attenuation map separately. PET uptake values were measured in the myocardium and compared between different PET images. The inclusion of lung and subcutaneous fat in the MRAC maps significantly affected the quantification of 18F-fluorodeoxyglucose activity in the myocardium but only moderately altered the appearance of the PET image without introduction of image artifacts. CONCLUSION: Optimal MRAC for cardiac PET/MR applications should include segmentation of all tissues in combination with compensation for the respiratory-related motion of the heart. Simple two-class MRAC is adequate for qualitative clinical assessment.


Assuntos
Coração/diagnóstico por imagem , Angiografia por Ressonância Magnética/normas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Idoso , Estudos de Coortes , Feminino , Fluordesoxiglucose F18/administração & dosagem , Fluordesoxiglucose F18/uso terapêutico , Coração/fisiopatologia , Humanos , Angiografia por Ressonância Magnética/métodos , Angiografia por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/estatística & dados numéricos , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/uso terapêutico
9.
Magn Reson Med ; 84(5): 2592-2605, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32301168

RESUMO

PURPOSE: To develop a free-breathing hepatic fat and R2∗ quantification method by extending a previously described stack-of-stars model-based fat-water separation technique with additional modeling of the transverse relaxation rate R2∗ . METHODS: The proposed technique combines motion-robust radial sampling using a stack-of-stars bipolar multi-echo 3D GRE acquisition with iterative model-based fat-water separation. Parallel-Imaging and Compressed-Sensing principles are incorporated through modeling of the coil-sensitivity profiles and enforcement of total-variation (TV) sparsity on estimated water, fat, and R2∗ parameter maps. Water and fat signals are used to estimate the confounder-corrected proton-density fat fraction (PDFF). Two strategies for handling respiratory motion are described: motion-averaged and motion-resolved reconstruction. Both techniques were evaluated in patients (n = 14) undergoing a hepatobiliary research protocol at 3T. PDFF and R2∗ parameter maps were compared to a breath-holding Cartesian reference approach. RESULTS: Linear regression analyses demonstrated strong (r > 0.96) and significant (P ≪ .01) correlations between radial and Cartesian PDFF measurements for both the motion-averaged reconstruction (slope: 0.90; intercept: 0.07%) and the motion-resolved reconstruction (slope: 0.90; intercept: 0.11%). The motion-averaged technique overestimated hepatic R2∗ values (slope: 0.35; intercept: 30.2 1/s) compared to the Cartesian reference. However, performing a respiratory-resolved reconstruction led to better R2∗ value consistency (slope: 0.77; intercept: 7.5 1/s). CONCLUSIONS: The proposed techniques are promising alternatives to conventional Cartesian imaging for fat and R2∗ quantification in patients with limited breath-holding capabilities. For accurate R2∗ estimation, respiratory-resolved reconstruction should be used.


Assuntos
Imageamento por Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica , Suspensão da Respiração , Humanos , Fígado/diagnóstico por imagem , Respiração
10.
Magn Reson Med ; 84(1): 128-141, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31762101

RESUMO

PURPOSE: To study the effects of magnetization transfer (MT, in which a semi-solid spin pool interacts with the free pool), in the context of magnetic resonance fingerprinting (MRF). METHODS: Simulations and phantom experiments were performed to study the impact of MT on the MRF signal and its potential influence on T1 and T2 estimation. Subsequently, an MRF sequence implementing off-resonance MT pulses and a dictionary with an MT dimension, generated by incorporating a two-pool model, were used to estimate the fractional pool size in addition to the B1+ , T1 , and T2 values. The proposed method was evaluated in the human brain. RESULTS: Simulations and phantom experiments showed that an MRF signal obtained from a cross-linked bovine serum sample is influenced by MT. Using a dictionary based on an MT model, a better match between simulations and acquired MR signals can be obtained (NRMSE 1.3% vs. 4.7%). Adding off-resonance MT pulses can improve the differentiation of MT from T1 and T2 . In vivo results showed that MT affects the MRF signals from white matter (fractional pool-size ~16%) and gray matter (fractional pool-size ~10%). Furthermore, longer T1 (~1060 ms vs. ~860 ms) and T2 values (~47 ms vs. ~35 ms) can be observed in white matter if MT is accounted for. CONCLUSION: Our experiments demonstrated a potential influence of MT on the quantification of T1 and T2 with MRF. A model that encompasses MT effects can improve the accuracy of estimated relaxation parameters and allows quantification of the fractional pool size.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Bovinos , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
11.
NMR Biomed ; 33(5): e4240, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31977117

RESUMO

Retrospective electrocardiogram-gated, 2D phase-contrast (PC) flow MRI is routinely used in clinical evaluation of valvular/vascular disease in pediatric patients with congenital heart disease (CHD). In patients not requiring general anesthesia, clinical standard PC is conducted with free breathing for several minutes per slice with averaging. In younger patients under general anesthesia, clinical standard PC is conducted with breath-holding. One approach to overcome this limitation is using either navigator gating or self-navigation of respiratory motion, at the expense of lengthening scan times. An alternative approach is using highly accelerated, free-breathing, real-time PC (rt-PC) MRI, which to date has not been evaluated in CHD patients. The purpose of this study was to develop a 38.4-fold accelerated 2D rt-PC pulse sequence using radial k-space sampling and compressed sensing with 1.5 × 1.5 × 6.0 mm3 nominal spatial resolution and 40 ms nominal temporal resolution, and evaluate whether it is capable of accurately measuring flow in 17 pediatric patients (aortic valve, pulmonary valve, right and left pulmonary arteries) compared with clinical standard 2D PC (either breath-hold or free breathing). For clinical translation, we implemented an integrated reconstruction pipeline capable of producing DICOMs of the order of 2 min per time series (46 frames). In terms of association, forward volume, backward volume, regurgitant fraction, and peak velocity at peak systole measured with standard PC and rt-PC were strongly correlated (R2 > 0.76; P < 0.001). Compared with clinical standard PC, in terms of agreement, forward volume (mean difference = 1.4% (3.0% of mean)) and regurgitant fraction (mean difference = -2.5%) were in good agreement, whereas backward volume (mean difference = -1.1 mL (28.2% of mean)) and peak-velocity at peak systole (mean difference = -21.3 cm/s (17.2% of mean)) were underestimated by rt-PC. This study demonstrates that the proposed rt-PC with the said spatial resolution and temporal resolution produces relatively accurate forward volumes and regurgitant fractions but underestimates backward volumes and peak velocities at peak systole in pediatric patients with CHD.


Assuntos
Algoritmos , Cardiopatias Congênitas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Criança , Eletrocardiografia , Estudos de Viabilidade , Feminino , Humanos , Modelos Lineares , Masculino , Imagens de Fantasmas
13.
AJR Am J Roentgenol ; 212(4): 855-858, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30807221

RESUMO

OBJECTIVE: The purpose of this study is to increase the value of MRI by reengineering the MRI workflow at a new imaging center to shorten the interval (i.e., turnaround time) between each patient examination by at least 5 minutes. MATERIALS AND METHODS: The elements of the MRI workflow that were optimized included the use of dockable tables, the location of patient preparation rooms, the number of doors per scanning room, and the storage location and duplication of coils. Turnaround times at the new center and at two existing centers were measured both for all patients and for situations when the next patient was ready to be brought into the scanner room after the previous patient's examination was completed. RESULTS: Workflow optimizations included the use of dockable tables, dedicated patient preparation rooms, two doors in each MRI room, positioning the scanner to provide the most direct path to the scanner, and coil storage in the preparation rooms, with duplication of the most frequently used coils. At the new imaging center, the median and mean (± SD) turnaround times for situations in which patients were ready for scanning were 115 seconds (95% CI, 113-117 seconds) and 132 ± 72 seconds (95% CI, 129-135 seconds), respectively, and the median and mean turnaround times for all situations were 141 seconds (95% CI, 137-146 seconds) and 272 ± 270 seconds (95% CI, 263-282 seconds), respectively. For existing imaging centers, the median and mean turnaround times for situations in which patients were ready for scanning were 430 seconds (95% CI, 424-434 seconds) and 460 ± 156 seconds (95% CI, 455-465 seconds), respectively, and the median and mean turnaround times for all situations were 481 seconds (95% CI, 474-486 seconds) and 537 ± 219 seconds (95% CI, 532-543 seconds), respectively. CONCLUSION: The optimized MRI workflow resulted in a mean time savings of 5 minutes 28 seconds per patient.


Assuntos
Eficiência Organizacional , Arquitetura de Instituições de Saúde , Imageamento por Ressonância Magnética , Fluxo de Trabalho , Humanos , Melhoria de Qualidade , Estudos de Tempo e Movimento
14.
Neuroradiology ; 61(3): 341-349, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30666351

RESUMO

PURPOSE: MRI methods that have reduced sensitivity to motion are attractive in pediatric applications. In spine imaging, physiologic motion such as respiration and cerebrospinal fluid pulsation can hamper diagnostic image quality. We compare a 3D T1-weighted non-Cartesian radial acquisition with a conventional Cartesian 2D turbo-spin-echo (TSE) acquisition in axial post-contrast spine imaging at 3T. METHODS: Thirty-two patients (mean age 12.2 ± 5.3 years) scheduled for routine clinical spine exams with contrast were enrolled. Three pediatric neuroradiologists compared the two sequences and assessed the presence of motion, the conspicuity of nerve roots, and whether one of the sequences was preferred in visualizing pathology using Likert scales. RESULTS: The Fleiss' kappa statistic for inter-rater agreement was 0.29 (95% confidence interval, 0.15-0.43) for the presence of motion, 0.30 (0.21-0.38) for conspicuity, and 0.37 (0.19-0.55) for sequence preference. Radial images were less sensitive to motion than TSE (p < 0.01). Motion and consequent artifacts were present in all TSE cases, while it was absent in 51% of the radial cases. In depicting nerve roots, radial images were superior in the cervical (p < 0.05), thoracic (p < 0.01), and lumbar spines (p < 0.01). Lastly, in 28 of the 32 patients who demonstrated contrast-enhancing pathology, radial images were preferred in 51% of the cases, while both sequences were equally preferred in 41% of the cases. CONCLUSION: We demonstrate the potential utility of radial MRI in post-contrast spine imaging. The free-breathing method is robust in generating diagnostic image quality and is superior in visualizing nerve roots and extramedullary metastases than traditional Cartesian TSE acquisitions.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Doenças da Coluna Vertebral/diagnóstico por imagem , Artefatos , Criança , Meios de Contraste , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Movimento (Física)
15.
Magn Reson Med ; 80(5): 1935-1948, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29656522

RESUMO

PURPOSE: Most clinical MR examinations require acquisition of different image contrasts. For abdominal exams, the scans are conventionally performed as separate acquisitions using respiratory gating or repeated breath holding, which can be time-inefficient and challenging for patients. Here, a hybrid imaging approach is described that creates T2 - and T1 -weighted images from a single scan and allows for free-breathing acquisition. THEORY AND METHODS: T2 -weighted data is collected using 3D fast spin-echo (FSE) acquisition with motion-robust radial stack-of-stars sampling. The wait time between the FSE trains is used to acquire T1 -weighted gradient-echo (GRE) data. Improved robustness is achieved by extracting a respiratory signal from the GRE data and using it for motion-weighted reconstruction. RESULTS: As validated in simulations and phantom scans, GRE acquisition in the wait time has minor effect on the signal strength and contrast. Volunteer scans at 1.5T showed that T2 - and T1 -weighted hybrid imaging is feasible during free-breathing. Furthermore, it has been demonstrated in a patient that hybrid imaging with T1 -weighted Dixon acquisition is possible. CONCLUSION: The described hybrid sequence enables comprehensive T2 - and T1 -weighted imaging in a single scan. In addition to free-breathing abdominal examination, it promises value for clinical applications that are frequently affected by motion artifacts.


Assuntos
Abdome/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Simulação por Computador , Feminino , Humanos , Fígado/diagnóstico por imagem , Pessoa de Meia-Idade , Movimento/fisiologia , Imagens de Fantasmas , Respiração
16.
Magn Reson Med ; 78(2): 565-576, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27612300

RESUMO

PURPOSE: Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. METHODS: Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. RESULTS: Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. CONCLUSION: The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Adulto , Idoso de 80 Anos ou mais , Algoritmos , Mama/diagnóstico por imagem , Pré-Escolar , Gorduras/química , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Respiração , Água/química
17.
NMR Biomed ; 30(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28885742

RESUMO

Non-Cartesian magnetic resonance imaging (MRI) sequences have shown great promise for abdominal examination during free breathing, but break down in the presence of bulk patient motion (i.e. voluntary or involuntary patient movement resulting in translation, rotation or elastic deformations of the body). This work describes a data-consistency-driven image stabilization technique that detects and excludes bulk movements during data acquisition. Bulk motion is identified from changes in the signal intensity distribution across different elements of a multi-channel receive coil array. A short free induction decay signal is acquired after excitation and used as a measure to determine alterations in the load distribution. The technique has been implemented on a clinical MR scanner and evaluated in the abdomen. Six volunteers were scanned and two radiologists scored the reconstructions. To show the applicability to other body areas, additional neck and knee images were acquired. Data corrupted by bulk motion were successfully detected and excluded from image reconstruction. An overall increase in image sharpness and reduction of streaking and shine-through artifacts were seen in the volunteer study, as well as in the neck and knee scans. The proposed technique enables automatic real-time detection and exclusion of bulk motion during MR examinations without user interaction. It may help to improve the reliability of pediatric MRI examinations without the use of sedation.


Assuntos
Abdome/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Imageamento Tridimensional , Joelho , Masculino , Movimento (Física) , Pescoço
18.
J Magn Reson Imaging ; 45(4): 966-987, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27981664

RESUMO

The introduction of compressed sensing for increasing imaging speed in magnetic resonance imaging (MRI) has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This article presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and nonlinear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the article discusses current challenges and future opportunities. LEVEL OF EVIDENCE: 5 J. Magn. Reson. Imaging 2017;45:966-987.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Humanos
19.
Magn Reson Med ; 75(3): 1346-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25891292

RESUMO

PURPOSE: Development of a quantitative transverse relaxation time (T2)-mapping platform that operates at clinically feasible timescales by employing advanced image reconstruction of radially undersampled multi spin-echo (MSE) datasets. METHODS: Data was acquired on phantom and in vivo at 3 Tesla using MSE protocols employing radial k-space sampling trajectories. In order to overcome the nontrivial spin evolution associated with MSE protocols, a numerical signal model was precalculated based on Bloch simulations of the actual pulse-sequence scheme used in the acquisition process. This signal model was subsequently incorporated into an iterative model-based image reconstruction process, producing T2 and proton-density maps. RESULTS: T2 maps of phantom and in vivo brain were successfully constructed, closely matching values produced by a single spin-echo reference scan. High-resolution mapping was also performed for the spinal cord in vivo, differentiating the underlying gray/white matter morphology. CONCLUSION: The presented MSE data-processing framework offers reliable mapping of T2 relaxation values in a ∼ 5-minute timescale, free of user- and scanner-dependent variations. The use of radial k-space sampling provides further advantages in the form of high immunity to irregular physiological motion, as well as enhanced spatial resolutions, owing to its inherent ability to perform alias-free limited field-of-view imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imagens de Fantasmas
20.
Magn Reson Med ; 75(2): 775-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25809847

RESUMO

PURPOSE: To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. METHODS: Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. RESULTS: XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. CONCLUSION: XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value.


Assuntos
Abdome , Bloqueio Atrioventricular/fisiopatologia , Compressão de Dados/métodos , Imageamento por Ressonância Magnética/métodos , Complexos Ventriculares Prematuros/fisiopatologia , Adulto , Técnicas de Imagem de Sincronização Cardíaca , Meios de Contraste , Feminino , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Técnicas de Imagem de Sincronização Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA