Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 69(2): 699-716, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229970

RESUMO

Cholestasis comprises aetiologically heterogeneous conditions characterized by accumulation of bile acids in the liver that actively contribute to liver damage. Sirtuin 1 (SIRT1) regulates liver regeneration and bile acid metabolism by modulating farnesoid X receptor (FXR); we here investigate its role in cholestatic liver disease. We determined SIRT1 expression in livers from patients with cholestatic disease, in two experimental models of cholestasis, as well as in human and murine liver cells in response to bile acid loading. SIRT1-overexpressing (SIRToe ) and hepatocyte-specific SIRT1-KO (knockout) mice (SIRThep-/- ) were subjected to bile duct ligation (BDL) and were fed with a 0.1% DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) diet to determine the biological relevance of SIRT1 during cholestasis. The effect of NorUDCA (24-norursodeoxycholic acid) was tested in BDL/SIRToe mice. We found that SIRT1 was highly expressed in livers from cholestatic patients, mice after BDL, and Mdr2 knockout mice (Mdr2-/- ) animals. The detrimental effects of SIRT1 during cholestasis were validated in vivo and in vitro. SIRToe mice showed exacerbated parenchymal injury whereas SIRThep-/- mice evidenced a moderate improvement after BDL and 0.1% DDC feeding. Likewise, hepatocytes isolated from SIRToe mice showed increased apoptosis in response to bile acids, whereas a significant reduction was observed in SIRThep-/- hepatocytes. Importantly, the decrease, but not complete inhibition, of SIRT1 exerted by norUDCA treatment correlated with pronounced improvement in liver parenchyma in BDL/SIRToe mice. Interestingly, both SIRT1 overexpression and hepatocyte-specific SIRT1 depletion correlated with inhibition of FXR, whereas modulation of SIRT1 by NorUDCA associated with restored FXR signaling. Conclusion: SIRT1 expression is increased during human and murine cholestasis. Fine-tuning expression of SIRT1 is essential to protect the liver from cholestatic liver damage.


Assuntos
Colestase/metabolismo , Sirtuína 1/metabolismo , Animais , Ácidos e Sais Biliares/biossíntese , Estudos de Casos e Controles , Modelos Animais de Doenças , Hepatócitos/metabolismo , Humanos , Camundongos
2.
J Nutr ; 144(8): 1174-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899158

RESUMO

The objective of this study was to evaluate the effect of increasing protein intake, at the expense of carbohydrates, on intrahepatic lipids (IHLs), circulating triglycerides (TGs), and body composition in healthy humans consuming a high-fat, hypercaloric diet. A crossover randomized trial with a parallel control group was performed. After a 2-wk run-in period, participants were assigned to either the control diet [n = 10; 27.8 energy percent (en%) fat, 16.9 en% protein, 55.3 en% carbohydrates] for 4 wk or a high-fat, hypercaloric diet (n = 17; >2 MJ/d) crossover trial with 2 periods of 2 wk, with either high-protein (HP) (37.7 en% fat, 25.7 en% protein, 36.6 en% carbohydrates) or normal-protein (NP) (39.4 en% fat, 15.4 en% protein, 45.2 en% carbohydrates) content. Measurements were performed after 2 wk of run-in (baseline), 2 wk of intervention (period 1), and 4 wk of intervention (period 2). A trend toward lower IHL and plasma TG concentrations during the HP condition compared with the NP condition was observed (IHL: 0.35 ± 0.04% vs. 0.51 ± 0.08%, P = 0.08; TG: 0.65 ± 0.03 vs. 0.77 ± 0.05 mmol/L, P = 0.07, for HP and NP, respectively). Fat mass was significantly lower (10.6 ± 1.72 vs. 10.9 ± 1.73 kg; P = 0.02) with the HP diet than with the NP diet, whereas fat-free mass was higher (55.7 ± 2.79 vs. 55.2 ± 2.80 kg; P = 0.003). This study indicated that an HP, high-fat, hypercaloric diet affects lipid metabolism. It tends to lower the IHL and circulating TG concentrations and significantly lowers fat mass and increases fat-free mass compared with an NP, high-fat, hypercaloric diet. This trail was registered at www.clinicaltrials.gov as NCT01354626.


Assuntos
Dieta Hiperlipídica , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Metabolismo dos Lipídeos , Tecido Adiposo , Composição Corporal , Peso Corporal , Estudos Cross-Over , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Metabolismo Energético , Feminino , Humanos , Resistência à Insulina , Masculino , Triglicerídeos/sangue , Adulto Jovem
3.
BioData Min ; 7: 21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368670

RESUMO

BACKGROUND: Genetic understanding of complex traits has developed immensely over the past decade but remains hampered by incomplete descriptions of contribution to phenotypic variance. Gene-environment (GxE) interactions are one of these contributors and in the guise of diet and physical activity are important modulators of cardiometabolic phenotypes and ensuing diseases. RESULTS: We mined the scientific literature to collect GxE interactions from 386 publications for blood lipids, glycemic traits, obesity anthropometrics, vascular measures, inflammation and metabolic syndrome, and introduce CardioGxE, a gene-environment interaction resource. We then analyzed the genes and SNPs supporting cardiometabolic GxEs in order to demonstrate utility of GxE SNPs and to discern characteristics of these important genetic variants. We were able to draw many observations from our extensive analysis of GxEs. 1) The CardioGxE SNPs showed little overlap with variants identified by main effect GWAS, indicating the importance of environmental interactions with genetic factors on cardiometabolic traits. 2) These GxE SNPs were enriched in adaptation to climatic and geographical features, with implications on energy homeostasis and response to physical activity. 3) Comparison to gene networks responding to plasma cholesterol-lowering or regression of atherosclerotic plaques showed that GxE genes have a greater role in those responses, particularly through high-energy diets and fat intake, than do GWAS-identified genes for the same traits. Other aspects of the CardioGxE dataset were explored. CONCLUSIONS: Overall, we demonstrate that SNPs supporting cardiometabolic GxE interactions often exhibit transcriptional effects or are under positive selection. Still, not all such SNPs can be assigned potential functional or regulatory roles often because data are lacking in specific cell types or from treatments that approximate the environmental factor of the GxE. With research on metabolic related complex disease risk embarking on genome-wide GxE interaction tests, CardioGxE will be a useful resource.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA