RESUMO
Peptides derived from retroviral envelope proteins have been shown to possess a wide range of immunosuppressive and anti-inflammatory activities. We have previously reported identification of such a peptide derived from the envelope protein coded by a human endogenous retrovirus (HERV). In this study, we identify that in vitro the peptide inhibits the KCa3.1 potassium channel, a potential target for therapy of immune diseases. We describe in vitro ENV59-GP3 effects with respect to potency of inhibition on KCa3.1 channels and calcium influx. Furthermore, we asses in vivo the effect of blocking KCa3.1 with ENV59-GP3 peptide or KCa3.1-blocker NS6180 on protection against DSS-induced acute colitis. ENV59-GP3 peptide treatment showed reduction of the disease score in the DSS-induced acute colitis mice model, which was comparable to effects of the KCa3.1 channel blocker NS6180. Analysis of cytokine production from DSS-mice model treated animals revealed equipotent inhibitory effects of the ENV59-GP3 and NS6180 compounds on the production of IL-6, TNF-α, IL-1ß. These findings altogether suggest that ENV59-GP3 functions as a KCa3.1 channel inhibitor and underline the implications of using virus derived channel blockers for treatment of autoimmune diseases. Additionally, they open the possibilities whether KCa3.1 inhibition is efficacious in patients with inflammatory bowel diseases.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Camundongos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
PURPOSE: Proprioceptive deficits are common in low back pain. The multifidus muscle undergoes substantial structural change after back injury, but whether muscle spindles are affected is unclear. This study investigated whether muscle spindles of the multifidus muscle are changed by intervertebral disc (IVD) degeneration in a large animal model. METHODS: IVD degeneration was induced by partial thickness annulus fibrosus lesion to the L3-4 IVD in nine sheep. Multifidus muscle tissue at L4 was harvested at six months after lesion, and from six age-/sex-matched naïve control animals. Muscle spindles were identified in Van Gieson's-stained sections by morphology. The number, location and cross-sectional area (CSA) of spindles, the number, type and CSA of intrafusal fibers, and thickness of the spindle capsule were measured. Immunofluorescence assays examined Collagen I and III expression. RESULTS: Multifidus muscle spindles were located centrally in the muscle and generally near connective tissue. There were no differences in the number or location of muscle spindles after IVD degeneration and only changes in the CSA of nuclear chain fibers. The thickness of connective tissue surrounding the muscle spindle was increased as was the expression of Collagen I and III. CONCLUSION: Changes to the connective tissue and collagen expression of the muscle spindle capsule are likely to impact their mechanical properties. Changes in capsule stiffness may impact the transmission of length change to muscle spindles and thus transduction of sensory information. This change in muscle spindle structure may explain some of the proprioceptive deficits identified with low back pain.
Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Animais , Colágeno , Colágeno Tipo I/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Dor Lombar/patologia , Fusos Musculares/metabolismo , Fusos Musculares/patologia , Músculos Paraespinais/patologia , OvinosRESUMO
Gating modifier toxins from spider venom are disulfide-rich peptides that typically comprise a stabilizing inhibitor cystine knot (ICK). These knottin peptides are being pursued as therapeutic leads for a range of conditions linked to transmembrane proteins. Recently, double-knottin peptides discovered in spider venom and produced by recombinant expression have provided insights into the pharmacology of transmembrane channels. Here, we use chemoenzymatic ligation to produce double-knottins to probe the effect of bivalent modulation on the voltage-gated sodium channel subtype 1.7 (NaV1.7), which is implicated in pain signaling. Monovalent knottins were oxidatively folded and then biochemically conjugated using sortase A, to form double-knottins. The structural integrity of the peptides was confirmed using NMR, and fluorescence-based activity assays provided evidence suggesting that coincubated monovalent and bivalent knottins can cooperatively modulate NaV1.7. We anticipate that double-knottins will provide novel tools for enhancing our understanding of, and design strategies for, therapeutically relevant voltage-gated ion channels.
Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Miniproteínas Nó de Cistina/química , Venenos de Aranha/química , Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Bicamadas Lipídicas/química , Sondas Moleculares , Ressonância Magnética Nuclear Biomolecular , Ressonância de Plasmônio de SuperfícieRESUMO
PURPOSE: Intervertebral disk (IVD) lesion and its subsequent degeneration have a profound effect on the multifidus muscle. The subacute/early chronic phase of multifidus remodeling after IVD lesion has been proposed to be regulated by inflammatory processes. The balance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages plays an important role in maintaining tissue integrity after injury. The localization, polarization of macrophage subtypes and their mediation of the pro-inflammatory cytokine tumor necrosis factor (TNF) are unknown in paraspinal muscles during IVD degeneration. A sheep model of IVD degeneration was used to investigate the role of macrophages and TNF in the structural alterations that occur within the multifidus muscle. METHODS: Anterolateral lesions were induced at L3-4 IVD in sheep. Multifidus muscle tissue at L4 was harvested 3 and 6 months after lesion and used for immunofluorescence assays to examine total macrophage number, macrophage polarization between M1 and M2, and to assess the localization of TNF expression in muscle, adipose and connective tissues from injured and naïve control animals. RESULTS: A greater proportion of M1 macrophages is present in muscle at both 3 and 6 months after IVD lesion, and adipose tissue at 6 months. Total number of macrophages is unchanged. At 6 months, expression of TNF is increased in adipose and connective tissue and the proportion of TNF expressed by M1 macrophages is increased. CONCLUSIONS: These data support the proposal that macrophages and TNF (pro-inflammatory cytokine) play an active role in the subacute/early chronic phase of remodeling in muscle, adipose and connective tissues of the multifidus during IVD degeneration. This presents a novel target for treatment. These slides can be retrieved under Electronic Supplementary Material.
Assuntos
Degeneração do Disco Intervertebral/patologia , Macrófagos/patologia , Músculos Paraespinais/patologia , Animais , Imunofluorescência , Inflamação/metabolismo , Inflamação/patologia , Disco Intervertebral/patologia , Vértebras Lombares/patologia , Macrófagos/metabolismo , Masculino , Músculos Paraespinais/metabolismo , Ovinos , Análise Espaço-Temporal , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The KCa 3.1 channel (KCNN4) is an important modulator of microglia responses in rodents, but no information exists on functional expression on microglia from human adults. We isolated and cultured microglia (max 1% astrocytes, no neurons or oligodendrocytes) from neocortex surgically removed from epilepsy patients and employed electrophysiological whole-cell measurements and selective pharmacological tools to elucidate functional expression of KCa 3.1. The channel expression was demonstrated as a significant increase in the voltage-independent current by NS309, a KCa 3.1/KCa 2 activator, followed by full inhibition upon co-application with NS6180, a highly selective KCa 3.1 inhibitor. A major fraction (79%) of unstimulated human microglia expressed KCa 3.1, and the difference in current between full activation and inhibition (ΔKCa 3.1) was estimated at 292 ± 48 pA at -40 mV (n = 75), which equals at least 585 channels per cell. Serial KCa 3.1 activation/inhibition significantly hyperpolarized/depolarized the membrane potential. The isolated human microglia were potently activated by lipopolysaccharide (LPS) shown as a prominent increase in TNF-α production. However, incubation with LPS neither changed the KCa 3.1 current nor the fraction of KCa 3.1 expressing cells. In contrast, the anti-inflammatory cytokine IL-4 slightly increased the KCa 3.1 current per cell, but as the membrane area also increased, there was no significant change in channel density. A large fraction of the microglia also expressed a voltage-dependent current sensitive to the KCa 1.1 modulators NS1619 and Paxilline and an inward-rectifying current with the characteristics of a Kir channel. The high functional expression of KCa 3.1 in microglia from epilepsy patients accentuates the need for further investigations of its role in neuropathological processes. GLIA 2016;64:2065-2078.
Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Microglia/metabolismo , Neocórtex/patologia , Benzimidazóis/farmacologia , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Epilepsia/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Interleucina-4/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Lipopolissacarídeos/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Microglia/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Oximas/farmacologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Fatores de TempoRESUMO
The main aim of this study was to employ high-resolution MRI to investigate the spatiotemporal development of pathological features associated with contusive spinal cord injury (SCI) in mice. Experimental mice were subjected to either sham surgery or moderate contusive SCI. A 16.4-T small-animal MR system was employed for nondestructive imaging of post-mortem, fixed spinal cord specimens at the subacute (7 days) and more chronic (28-35 days) stages post-injury. Routine histological techniques were used for subsequent investigation of the observed neuropathology at the microscopic level. The central core of the lesion appeared as a dark hypo-intense area on MR images at all time points investigated. Small focal hypo-intense spots were also observed spreading through the dorsal funiculi proximal and distal to the site of impact, an area that is known to undergo gliosis and Wallerian degeneration in response to injury. Histological examination revealed these hypo-intense spots to be high in iron content as determined by Prussian blue staining. Quantitative image analysis confirmed the increased presence of iron deposits at all post-injury time points investigated (p<0.05). Distant iron deposits were also detectable through live imaging without the use of contrast-enhancing agents, enabling the longitudinal investigation of this pathology in individual animals. Further immunohistochemical evaluation showed that intracellular iron deposits localised to macrophages/microglia, astrocytes and oligodendrocytes in the subacute phase of SCI, but predominantly to glial fibrillary acidic protein-positive, CC-1-positive astrocytes at later stages of recovery. Progressive, widespread intracellular iron accumulation is thus a normal feature of SCI in mice, and high-resolution MRI can be effectively used to detect and monitor these neuropathological changes with time.
Assuntos
Ferro/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Biomarcadores/análise , Feminino , Aumento da Imagem/métodos , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição TecidualRESUMO
The olfactory epithelium is a site of sustained adult neurogenesis where olfactory sensory neurons are continuously replaced from endogenous stem/progenitor cells. Epithelial macrophages have been implicated in the phagocytosis of degenerating cells but the molecular mechanisms allowing for their recruitment and activation while maintaining a neurogenic microenvironment are poorly understood. We have previously shown that the chemokine fractalkine (CX3CL1) is expressed by olfactory sensory neurons and ensheathing cells in the olfactory epithelium. In turn, the fractalkine receptor, CX3CR1, is expressed on macrophages and dendritic cells within the olfactory epithelium. We report that a selective cell death of olfactory sensory neurons in the epithelium of CX3CR1-deficient mice via target ablation (i.e. olfactory bulbectomy) results in an exacerbated loss of olfactory sensory neurons compared to wild-type mice. In addition, reduced proliferation of intraepithelial stem/progenitor cells was observed in lesioned CX3CR1-deficient mice, suggesting an impaired regenerative response. Importantly, a lack of CX3CL1-signaling caused increased recruitment of macrophages into the olfactory epithelium, which in turn contained higher levels of pro-inflammatory cytokines (e.g. TNF-α and IL-6) as determined by qPCR. We also present novel data showing that, relative to wild-type, CX3CR1-deficient macrophages have diminished phagocytic activity following stimulation with CX3CL1. Collectively, our data indicate that signaling through the CX3CR1 receptor modulates macrophage activity, resulting in an environment conducive to olfactory sensory neuron clearance and targeted replacement from endogenous stem/progenitor cells.
Assuntos
Regeneração Nervosa/fisiologia , Neurogênese/genética , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores de Quimiocinas/genética , Animais , Receptor 1 de Quimiocina CX3C , Morte Celular/genética , Citocinas/genética , Citocinas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/cirurgia , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/citologia , Receptores de Quimiocinas/metabolismoRESUMO
The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.
RESUMO
Voltage-gated sodium (NaV) channels play a fundamental role in normal neurological function, especially via the initiation and propagation of action potentials. The NaV1.1 subtype is found in inhibitory interneurons of the brain and it is essential for maintaining a balance between excitation and inhibition in neuronal networks. Heterozygous loss-of-function mutations of SCN1A, the gene encoding NaV1.1, underlie Dravet syndrome (DS), a severe pediatric epilepsy. We recently demonstrated that selective inhibition of NaV1.1 inactivation prevents seizures and premature death in a mouse model of DS. Thus, selective modulators of NaV1.1 might be useful therapeutics for treatment of DS as they target the underlying molecular deficit. Numerous scorpion-venom peptides have been shown to modulate the activity of NaV channels, but little is known about their activity at NaV1.1. Here we report the isolation, sequence, three-dimensional structure, recombinant production, and functional characterization of two peptidic modulators of NaV1.1 from venom of the buthid scorpion Hottentotta jayakari. These peptides, Hj1a and Hj2a, are potent agonists of NaV1.1 (EC50 of 17 and 32 nM, respectively), and they present dual α/ß activity by modifying both the activation and inactivation properties of the channel. NMR studies of rHj1a indicate that it adopts a cystine-stabilized αß fold similar to known scorpion toxins. Although Hj1a and Hj2a have only limited selectivity for NaV1.1, their unusual dual mode of action provides an alternative approach to the development of selective NaV1.1 modulators for the treatment of DS.
RESUMO
Traumatic spinal cord injury (SCI) triggers an acute-phase response that leads to systemic inflammation and rapid mobilization of bone marrow (BM) neutrophils into the blood. These mobilized neutrophils then accumulate in visceral organs and the injured spinal cord where they cause inflammatory tissue damage. The receptor for complement activation product 3a, C3aR1, has been implicated in negatively regulating the BM neutrophil response to tissue injury. However, the mechanism via which C3aR1 controls BM neutrophil mobilization, and also its influence over SCI outcomes, are unknown. Here, we show that the C3a/C3aR1 axis exerts neuroprotection in SCI by acting as a physiological antagonist against neutrophil chemotactic signals. We show that C3aR1 engages phosphatase and tensin homolog (PTEN), a negative regulator of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, to restrain C-X-C chemokine receptor type 2-driven BM neutrophil mobilization following trauma. These findings are of direct clinical significance as lower circulating neutrophil numbers at presentation were identified as a marker for improved recovery in human SCI. Our work thus identifies C3aR1 and its downstream intermediary, PTEN, as therapeutic targets to broadly inhibit neutrophil mobilization/recruitment following tissue injury and reduce inflammatory pathology.
Assuntos
Neutrófilos/metabolismo , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Receptores de Interleucina-8B/metabolismo , Traumatismos da Medula Espinal/metabolismo , Adulto , Animais , Medula Óssea/patologia , Adesão Celular , Movimento Celular , Modelos Animais de Doenças , Feminino , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases , Receptor da Anafilatoxina C5a/genética , Traumatismos da Medula Espinal/patologia , Transcriptoma , Ferimentos e Lesões/patologia , Adulto JovemRESUMO
The olfactory epithelium (OE) is a site of massive adult neurogenesis where olfactory sensory neurons (OSNs) are continuously turned over. Tissue macrophages have been implicated in phagocytosis of degenerating cells but the molecular mechanisms that allow for their recruitment while maintaining a neurogenic microenvironment are poorly understood. This study reports that the neuroprotective chemokine CX3CL1 is expressed by OSNs and olfactory ensheathing cells. Monocyte-derived cells in the OE depend on CX3CL1-signalling for intraepithelial migration and apical dendrite expression. These observations are first to demonstrate phenotypic differences in appearance and distribution of monocyte-derived cells in nervous tissue due to CX3CR1 deficiency.
Assuntos
Movimento Celular/fisiologia , Dendritos/fisiologia , Neurogênese/genética , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/fisiologia , Receptores de Quimiocinas/fisiologia , Animais , Receptor 1 de Quimiocina CX3C , Contagem de Células/métodos , Movimento Celular/genética , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Monócitos/fisiologia , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/citologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Quimiocinas/deficiência , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de HIV/genética , Receptores de HIV/metabolismoRESUMO
Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the in vivo analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory / protective state of microglia for the development of novel PET tracers. Methods: New translational markers of the anti-inflammatory/protective activation state of microglia were selected by bioinformatic approaches and were in vitro and ex vivo validated by qPCR and immunohistochemistry in rodent and human samples. Once a viable marker was identified, a novel PET tracer was developed. This tracer was subsequently confirmed by autoradiography experiments in murine and human brain tissues. Results: Here we provide evidence that P2RY12 expression increases in murine and human microglia following exposure to anti-inflammatory stimuli, and that its expression is modulated in the reparative phase of experimental and clinical stroke. We then synthesized a novel carbon-11 labeled tracer targeting P2RY12, showing increased binding in brain sections of mice treated with IL4, and low binding to brain sections of a murine stroke model and of a stroke patient. Conclusion: This study provides new translational targets for PET tracers for the anti-inflammatory/protective activation state of microglia and shows the potential of a rationale-based approach. It therefore paves the way for the development of novel non-invasive methodologies aimed to monitor the success of therapeutic approaches in various neurological diseases.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Microglia/imunologia , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Anti-Inflamatórios/administração & dosagem , Radioisótopos de Carbono/administração & dosagem , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Interleucina-4/administração & dosagem , Camundongos , Traçadores Radioativos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P2Y12/análise , Roedores , Acidente Vascular Cerebral/patologiaRESUMO
Potassium channels play important roles in microglia functions and thus constitute potential targets for the treatment of neurodegenerative diseases like Alzheimer, Parkinson and stroke. However, uncertainty still prevails as to which potassium channels are expressed and at what levels in different species, how the expression pattern changes upon activation with M1 or M2 polarizing stimuli compared with more complex exposure paradigms, and - most importantly - how these findings relate to the in vivo situation. In this mini-review we discuss the functional potassium channel expression pattern in cultured neonatal mouse microglia in the light of data obtained previously from animal disease models and immunohistochemical studies and compare it with a recent study of adult human microglia isolated from epilepsy patients. Overall, microglial potassium channel expression is very plastic and possibly shows species differences and therefore should be studied carefully in each disease setting and respective animal models.
Assuntos
Microglia/metabolismo , Plasticidade Neuronal , Canais de Potássio/metabolismo , Animais , Células Cultivadas , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Humanos , Camundongos , Mutação , Fenótipo , Especificidade da EspécieRESUMO
STUDY DESIGN: Longitudinal case-control animal model. OBJECTIVE: To investigate effects of mesenchymal stem cell (MSC) treatment on multifidus muscle remodeling after intervertebral disc (IVD) lesion. SUMMARY OF BACKGROUND DATA: Lesion and degeneration of IVDs cause structural remodeling of the multifidus muscle. Proinflammatory cytokines are thought to contribute. MSC treatment restores IVD health after lesion but its effects on surrounding tissues remains unknown. Using an animal model of IVD degeneration, we assessed the effects of MSC treatment of IVDs on the structural remodeling and cytokine expression within the multifidus muscle. METHODS: An anterolateral lesion was performed on the L1-2, L3-4, and L5-6 IVDs in sheep. At either 4 (early treatment) or 12 (late treatment) weeks after IVD lesion, MSCs were injected into the lesioned IVD. Multifidus muscle was harvested from L2 (gene expression analysis) and L4 (histological analysis) at 3 or 6 months after IVD lesion and naïve controls for histological analysis of muscle, adipose, and connective tissue cross-sectional areas, and immunohistochemistry to study muscle fiber types. Real-time polymerase chain reactions quantified expression of tumor necrosis factor, interleukin-1ß, and transforming growth factor-ß1. RESULTS: MSC treatment of IVD lesion prevented the increased adipose and connective tissue cross-sectional area expected after IVD lesion. MSC treatment did not prevent slow-to-fast muscle fiber type transformation. Gene expression of proinflammatory cytokines within the muscle was altered by the MSC treatment of IVD. Increased interleukin-1ß expression was prevented in the early treatment group and tumor necrosis factor and transforming growth factor-ß1 expression was upregulated at 6 months. CONCLUSION: Results show that although MSC treatment prevents fatty infiltration and fibrosis of the multifidus muscle after IVD lesion, it cannot prevent a muscle inflammatory response and muscle fiber transformation. These findings highlight the potential role of MSC therapy after IVD injury, but reveals that other interventions may also be necessary to optimize recovery of muscle. LEVEL OF EVIDENCE: 4.
Assuntos
Degeneração do Disco Intervertebral/terapia , Células-Tronco Mesenquimais/citologia , Fibras Musculares Esqueléticas/citologia , Músculos Paraespinais/citologia , Animais , Tecido Conjuntivo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Masculino , Transplante de Células-Tronco Mesenquimais , OvinosRESUMO
STUDY DESIGN: Longitudinal case-controlled animal study. OBJECTIVE: To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. SUMMARY OF BACKGROUND DATA: Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. METHODS: Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. RESULTS: Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1ß) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. CONCLUSION: This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in parallel with the expression of the genes that provide putative mechanisms for multifidus structural remodeling. This provides novel targets for pharmacological and physical interventions. LEVEL OF EVIDENCE: N/A.
Assuntos
Tecido Adiposo/metabolismo , Lesões nas Costas/metabolismo , Tecido Conjuntivo/metabolismo , Disco Intervertebral/lesões , Músculos Paraespinais/metabolismo , Adipogenia , Tecido Adiposo/química , Tecido Adiposo/patologia , Animais , Estudos de Casos e Controles , Colágeno/genética , Colágeno/metabolismo , Tecido Conjuntivo/química , Tecido Conjuntivo/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Estudos Longitudinais , Masculino , Atrofia Muscular , Músculos Paraespinais/química , Músculos Paraespinais/patologia , OvinosRESUMO
STUDY DESIGN: Longitudinal case-controlled animal study. OBJECTIVE: To investigate the effect of an intervertebral disc (IVD) lesion on the proportion of slow, fast, and intermediate muscle fiber types in the multifidus muscle in sheep, and whether muscle fiber changes were paralleled by local gene expression of the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1-ß. SUMMARY OF BACKGROUND DATA: Structure and behavior of the multifidus muscle change in acute and chronic back pain, but the mechanisms are surprisingly poorly understood and the link between structure and behavior is tenuous. Although changes in muscle fiber types have the potential to unify the observations, the effect of injury on muscle fiber distribution has not been adequately tested, and understanding of possible mechanisms is limited. METHODS: The L1-L2, L3-L4, and L5-L6 IVDs of 11 castrated male sheep received anterolateral lesions. Six control sheep underwent no surgical procedures. Multifidus muscle tissue was harvested at L4 for muscle fiber analysis using immunohistochemistry and L2 for cytokine analysis with polymerase chain reaction for local gene expression of TNF-α and interleukin-1ß. RESULTS: The proportion of slow muscle fibers in multifidus was significantly less in the lesioned animals both ipsilateral and contralateral to the IVD lesion. The greatest reduction in slow fibers was in the deep medial muscle region. A greater prevalence of intermediate fibers on the uninjured side implies a delayed fiber-type transformation on that side. TNF-α gene expression in multifidus was greater on both sides in the lesion animals than in the muscle of control animals. Interleukin-1ß was increased only on the injured side. CONCLUSION: These data provide evidence of muscle fiber changes after induction of an IVD lesion and a parallel increase in TNF-α expression. Proinflammatory cytokine changes provide a novel mechanism to explain behavioral and structural changes in multifidus. LEVEL OF EVIDENCE: N/A.
Assuntos
Interleucina-1beta/genética , Degeneração do Disco Intervertebral/genética , Fibras Musculares Esqueléticas/imunologia , Músculos Paraespinais/imunologia , Fator de Necrose Tumoral alfa/genética , Animais , Modelos Animais de Doenças , Expressão Gênica/imunologia , Interleucina-1beta/imunologia , Degeneração do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/patologia , Vértebras Lombares , Masculino , Fibras Musculares Esqueléticas/patologia , Fibras Musculares de Contração Lenta/imunologia , Fibras Musculares de Contração Lenta/patologia , Orquiectomia , Músculos Paraespinais/patologia , Ovinos , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Macrophages in the injured spinal cord originate from resident microglia and blood monocytes. Whether this diversity in origins contributes to their seemingly dual role in immunopathology and repair processes has remained poorly understood. Here we took advantage of Cx3cr1(gfp) mice to visualise monocyte-derived macrophages in the injured spinal cord via adoptive cell transfer and bone marrow (BM) chimera approaches. We show that the majority of infiltrating monocytes at 7 days post-injury originate from the spleen and only to a lesser extent from the BM. Prevention of early monocyte infiltration via splenectomy was associated with improved recovery at 42 days post-SCI. In addition, an increased early presence of infiltrating monocytes/macrophages, as a result of CX3CR1 deficiency within the peripheral immune compartment, correlated with worsened injury outcomes. Adoptive transfer of identified Cx3cr1(gfp/+) monocytes confirmed peak infiltration at 7 days post-injury, with inflammatory (Ly6C(high)) monocytes being most efficiently recruited. Focal SCI also changed the composition of the two major monocyte subsets in the blood, with more Ly6C(high) cells present during peak recruitment. Adoptive transfer experiments further suggested high turnover of inflammatory monocytes in the spinal cord at 7 days post-injury. Consistent with this, only a small proportion of infiltrating cells unequivocally expressed polarisation markers for pro-inflammatory (M1) or alternatively activated (M2) macrophages at this time point. Our findings offer new insights into the origins of monocyte-derived macrophages after SCI and their contribution to functional recovery, providing a basis for further scrutiny and selective targeting of Ly6C(high) monocytes to improve outcomes from neurotraumatic events.
Assuntos
Monócitos/imunologia , Monócitos/patologia , Receptores de Quimiocinas/deficiência , Recuperação de Função Fisiológica/genética , Traumatismos da Medula Espinal/fisiopatologia , Transferência Adotiva , Análise de Variância , Animais , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Locomoção/fisiologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Baço/patologia , Fatores de Tempo , Tirosina Quinase 3 Semelhante a fms/metabolismoRESUMO
Loss-of-function mutations in the pore-forming α subunit of the voltage-gated sodium channel 1.7 (Nav 1.7) cause congenital indifference to pain and anosmia. We used immunohistochemical techniques to study Nav 1.7 localization in the rat olfactory system in order to better understand its role in olfaction. We confirm that Nav 1.7 is expressed on olfactory sensory axons and report its presence on vomeronasal axons, indicating an important role for Nav 1.7 in transmission of pheromonal cues. Following neuroepithelial injury, Nav 1.7 was transiently expressed by cells of monocytic lineage. These findings support an emerging role for Nav 1.7 in immune function. This sodium channel may provide an important pharmacological target for treatment of inflammatory injury and inflammatory pain syndromes.
Assuntos
Mucosa Olfatória/metabolismo , Canais de Sódio/metabolismo , Animais , Axônios/metabolismo , Células CHO , Cricetinae , Cricetulus , Humanos , Imuno-Histoquímica , Masculino , Monócitos/imunologia , Monócitos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7 , Bulbo Olfatório/citologia , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/inervação , Ratos , Ratos Sprague-Dawley , Olfato/fisiologia , Canais de Sódio/imunologia , Canais de Sódio/fisiologia , Órgão Vomeronasal/citologia , Órgão Vomeronasal/fisiologiaRESUMO
Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx3cr1(gfp) mice, in which the gene sequence for eGFP was knocked into the CX3CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx3cr1(gfp/+) mice, we show that eGFP(+) cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx3cr1(gfp/+) donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx3cr1(gfp/gfp) (i.e., CX3CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68(low)MHC-II(+) subset appeared minimally affected by CX3CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX3CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.