Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Gene Ther ; 28(3-4): 117-129, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33093657

RESUMO

Vaccinology is shifting toward synthetic RNA platforms which allow for rapid, scalable, and cell-free manufacturing of prophylactic and therapeutic vaccines. The simple development pipeline is based on in vitro transcription of antigen-encoding sequences or immunotherapies as synthetic RNA transcripts, which are then formulated for delivery. This approach may enable a quicker response to emerging disease outbreaks, as is evident from the swift pursuit of RNA vaccine candidates for the global SARS-CoV-2 pandemic. Both conventional and self-amplifying RNAs have shown protective immunization in preclinical studies against multiple infectious diseases including influenza, RSV, Rabies, Ebola, and HIV-1. Self-amplifying RNAs have shown enhanced antigen expression at lower doses compared to conventional mRNA, suggesting this technology may improve immunization. This review will explore how self-amplifying RNAs are emerging as important vaccine candidates for infectious diseases, the advantages of synthetic manufacturing approaches, and their potential for preventing and treating chronic infections.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , RNA Viral/imunologia , SARS-CoV-2/imunologia , Vacinação , COVID-19/epidemiologia , COVID-19/genética , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/uso terapêutico , Humanos , RNA Viral/genética , RNA Viral/uso terapêutico , SARS-CoV-2/genética
2.
BMC Infect Dis ; 19(1): 802, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31510934

RESUMO

BACKGROUND: Chronic infection with hepatitis B virus (HBV) is a serious global health problem. Persistence of the virus occurs as a result of stability of the replication intermediate comprising covalently closed circular DNA (cccDNA). Development of drugs that are capable of disabling this cccDNA is vital. METHODS: To investigate an epigenetic approach to inactivating viral DNA, we engineered transcriptional repressors that comprise an HBV DNA-binding domain of transcription activator like effectors (TALEs) and a fused Krüppel Associated Box (KRAB). These repressor TALEs (rTALEs) targeted the viral surface open reading frame and were placed under transcription control of constitutively active or liver-specific promoters. RESULTS: Evaluation in cultured cells and following hydrodynamic injection of mice revealed that the rTALEs significantly inhibited production of markers of HBV replication without evidence of hepatotoxicity. Increased methylation of HBV DNA at CpG island II showed that the rTALEs caused intended epigenetic modification. CONCLUSIONS: Epigenetic modification of HBV DNA is a new and effective means of inactivating the virus in vivo. The approach has therapeutic potential and avoids potentially problematic unintended mutagenesis of gene editing.


Assuntos
DNA Viral/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/genética , Hepatite B/terapia , Hepatite B/virologia , Proteínas Repressoras/metabolismo , Replicação Viral/genética , Animais , Linhagem Celular , Ilhas de CpG , Metilação de DNA , DNA Circular/genética , DNA Viral/biossíntese , Epigênese Genética , Feminino , Fígado/metabolismo , Fígado/virologia , Camundongos , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética
3.
Biochem Biophys Res Commun ; 478(4): 1563-8, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27590580

RESUMO

Chronic infection with hepatitis B virus (HBV) remains an important global health problem. Currently licensed therapies have modest curative efficacy, which is as a result of their transient effects and limited action on the viral replication intermediate comprising covalently closed circular DNA (cccDNA). Gene editing with artificial HBV-specific endonucleases and use of artificial activators of the RNA interference pathway have shown anti-HBV therapeutic promise. Although results from these gene therapies are encouraging, maximizing durable antiviral effects is important. To address this goal, a strategy that entails combining gene editing with homology-directed DNA recombination (HDR), to introduce HBV-silencing artificial primary microRNAs (pri-miRs) into HBV DNA targets, is reported here. Previously described transcription activator-like effector nucleases (TALENs) that target the core and surface sequences of HBV were used to introduce double stranded breaks in the viral DNA. Simultaneous administration of donor sequences encoding artificial promoterless anti-HBV pri-miRs, with flanking arms that were homologous to sequences adjoining the TALENs' targets, augmented antiviral efficacy. Analysis showed targeted integration and the length of the flanking homologous arms of donor DNA had a minimal effect on antiviral efficiency. These results support the notion that gene editing and silencing may be combined to effect improved inhibition of HBV gene expression.


Assuntos
DNA Viral/genética , Vírus da Hepatite B/genética , MicroRNAs/genética , Recombinação Genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Antivirais/farmacologia , Sequência de Bases , Células Hep G2 , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Mutação/genética , Reação em Cadeia da Polimerase , Recombinação Genética/efeitos dos fármacos
4.
Adv Exp Med Biol ; 848: 31-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25757614

RESUMO

Chronic infection with hepatitis B virus (HBV) occurs in approximately 5 % of the world's human population and persistence of the virus is associated with serious complications of cirrhosis and liver cancer. Currently available treatments are modestly effective and advancing novel therapeutic strategies is a medical priority. Stability of the viral cccDNA replication intermediate is a major factor that has impeded the development of therapies that are capable of eliminating chronic infection. Recent advances that employ gene therapy strategies offer useful advantages over current therapeutics. Silencing of HBV gene expression by harnessing the RNA interference pathway has been shown to be highly effective in cell culture and in vivo. However, a potential limitation of this approach is that the post-transcriptional mechanism of gene silencing does not disable cccDNA. Early results using designer transcription activator-like effector nucleases (TALENs) and repressor TALEs (rTALEs) have shown potential as a mode of inactivating cccDNA. In this article, we review the recent advances that have been made in HBV gene therapy, with a particular emphasis on the potential anti-HBV therapeutic utility of designed sequence-specific DNA binding proteins and their derivatives.


Assuntos
Terapia Genética/tendências , Vírus da Hepatite B , Hepatite B/terapia , Animais , Proteínas de Ligação a DNA/genética , Terapia Genética/métodos , Hepatite B/epidemiologia , Hepatite B/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Terapia de Alvo Molecular/métodos , Interferência de RNA/fisiologia
5.
Adv Exp Med Biol ; 848: 117-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25757618

RESUMO

Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects.


Assuntos
Síndrome da Imunodeficiência Adquirida/terapia , Terapia Genética/métodos , Edição de RNA , Receptores CCR5/genética , Animais , Endonucleases/genética , Endonucleases/metabolismo , HIV-1/fisiologia , Humanos , Terapia de Alvo Molecular/métodos , RNA Guia de Cinetoplastídeos/genética , Receptores CCR5/metabolismo , Internalização do Vírus
6.
Mol Ther ; 21(10): 1889-97, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23883864

RESUMO

Chronic hepatitis B virus (HBV) infection remains an important global health problem. Stability of the episomal covalently closed circular HBV DNA (cccDNA) is largely responsible for the modest curative efficacy of available therapy. Since licensed anti-HBV drugs have a post-transcriptional mechanism of action, disabling cccDNA is potentially of therapeutic benefit. To develop this approach, we engineered mutagenic transcription activator-like effector nucleases (TALENs) that target four HBV-specific sites within the viral genome. TALENs with cognate sequences in the S or C open-reading frames (ORFs) efficiently disrupted sequences at the intended sites and suppressed markers of viral replication. Following triple transfection of cultured HepG2.2.15 cells under mildly hypothermic conditions, the S TALEN caused targeted mutation in ~35% of cccDNA molecules. Markers of viral replication were also inhibited in vivo in a murine hydrodynamic injection model of HBV replication. HBV target sites within S and C ORFs of the injected HBV DNA were mutated without evidence of toxicity. These findings are the first to demonstrate a targeted nuclease-mediated disruption of HBV cccDNA. Efficacy in vivo also indicates that these engineered nucleases have potential for use in treatment of chronic HBV infection.


Assuntos
DNA Circular/genética , DNA Viral/genética , Desoxirribonucleases/genética , Desoxirribonucleases/fisiologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Replicação Viral , Animais , Sequência de Bases , Linhagem Celular , Replicação do DNA , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Células Hep G2 , Hepatite B/patologia , Hepatite B/terapia , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese , Engenharia de Proteínas , Transfecção
7.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111658

RESUMO

Africa bears the highest burden of infectious diseases, yet the continent is heavily reliant on First World countries for the development and supply of life-saving vaccines. The COVID-19 pandemic was a stark reminder of Africa's vaccine dependence and since then great interest has been generated in establishing mRNA vaccine manufacturing capabilities on the African continent. Herein, we explore alphavirus-based self-amplifying RNAs (saRNAs) delivered by lipid nanoparticles (LNPs) as an alternative to the conventional mRNA vaccine platform. The approach is intended to produce dose-sparing vaccines which could assist resource-constrained countries to achieve vaccine independence. Protocols to synthesize high-quality saRNAs were optimized and in vitro expression of reporter proteins encoded by saRNAs was achieved at low doses and observed for an extended period. Permanently cationic or ionizable LNPs (cLNPs and iLNPs, respectively) were successfully produced, incorporating saRNAs either exteriorly (saRNA-Ext-LNPs) or interiorly (saRNA-Int-LNPs). DOTAP and DOTMA saRNA-Ext-cLNPs performed best and were generally below 200 nm with good PDIs (<0.3). DOTAP and DDA saRNA-Int-cLNPs performed optimally, allowing for saRNA amplification. These were slightly larger, with higher PDIs as a result of the method used, which will require further optimization. In both cases, the N:P ratio and lipid molar ratio had a distinct effect on saRNA expression kinetics, and RNA was encapsulated at high percentages of >90%. These LNPs allow the delivery of saRNA with no significant toxicity. The optimization of saRNA production and identification of potential LNP candidates will facilitate saRNA vaccine and therapeutic development. The dose-sparing properties, versatility, and manufacturing simplicity of the saRNA platform will facilitate a rapid response to future pandemics.

8.
Hum Gene Ther ; 34(17-18): 896-904, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37639360

RESUMO

The development of prophylatic or therapeutic medicines for infectious diseases is one of the priorities for health organizations worldwide. Innovative solutions are required to achieve effective, safe, and accessible treatments for most if not all infectious diseases, particularly those that are chronic in nature or that emerge unexpectedly over time. Genetic technologies offer versatile possibilities to design therapies against pathogens. Recent developments such as mRNA vaccines, CRISPR gene editing, and immunotherapies provide unprecedented hope to achieve significant results in the field of infectious diseases. This review will focus on advances in this domain, showcasing the cross-fertilization with other fields (e.g., oncology), and addressing some of the logistical and economic concerns important to consider when making these advances accessible to diverse populations around the world.


Assuntos
Doenças Transmissíveis , Humanos , Doenças Transmissíveis/genética , Doenças Transmissíveis/terapia , Terapia Genética , Vacinação , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
9.
Front Immunol ; 13: 1018961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353641

RESUMO

Synthetic mRNA technologies represent a versatile platform that can be used to develop advanced drug products. The remarkable speed with which vaccine development programs designed and manufactured safe and effective COVID-19 vaccines has rekindled interest in mRNA technology, particularly for future pandemic preparedness. Although recent R&D has focused largely on advancing mRNA vaccines and large-scale manufacturing capabilities, the technology has been used to develop various immunotherapies, gene editing strategies, and protein replacement therapies. Within the mRNA technologies toolbox lie several platforms, design principles, and components that can be adapted to modulate immunogenicity, stability, in situ expression, and delivery. For example, incorporating modified nucleotides into conventional mRNA transcripts can reduce innate immune responses and improve in situ translation. Alternatively, self-amplifying RNA may enhance vaccine-mediated immunity by increasing antigen expression. This review will highlight recent advances in the field of synthetic mRNA therapies and vaccines, and discuss the ongoing global efforts aimed at reducing vaccine inequity by establishing mRNA manufacturing capacity within Africa and other low- and middle-income countries.


Assuntos
COVID-19 , Vacinas , Humanos , RNA Mensageiro/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Tecnologia
10.
Front Immunol ; 13: 834650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154157

RESUMO

Infection with the hepatitis B virus (HBV) continues to pose a major threat to public health as approximately 292 million people worldwide are currently living with the chronic form of the disease, for which treatment is non-curative. Chronic HBV infections often progress to hepatocellular carcinoma (HCC) which is one of the world's leading causes of cancer-related deaths. Although the process of hepatocarcinogenesis is multifaceted and has yet to be fully elucidated, several studies have implicated numerous long non-coding RNAs (lncRNAs) as contributors to the development of HCC. These host-derived lncRNAs, which are often dysregulated as a consequence of viral infection, have been shown to function as signals, decoys, guides, or scaffolds, to modulate gene expression at epigenetic, transcriptional, post-transcriptional and even post-translational levels. These lncRNAs mainly function to promote HBV replication and oncogene expression or downregulate tumor suppressors. Very few lncRNAs are known to suppress tumorigenesis and these are often downregulated in HCC. In this review, we describe the mechanisms by which lncRNA dysregulation in HBV-related HCC promotes tumorigenesis and cancer progression.


Assuntos
Carcinoma Hepatocelular/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Regulação Neoplásica da Expressão Gênica , Hepatite B/genética , Hepatite B/virologia , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , RNA Longo não Codificante/genética
11.
Viruses ; 14(9)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36146747

RESUMO

Despite being vaccine-preventable, hepatitis B virus (HBV) infection remains the seventh leading cause of mortality in the world. In South Africa (SA), over 1.9 million people are chronically infected with HBV, and 70% of all Black chronic carriers are infected with HBV subgenotype A1. The virus remains a significant burden on public health in SA despite the introduction of an infant immunization program implemented in 1995 and the availability of effective treatment for chronic HBV infection. In addition, the high prevalence of HIV infection amplifies HBV replication, predisposes patients to chronicity, and complicates management of the infection. HBV research has made significant progress leading to better understanding of HBV epidemiology and management challenges in the SA context. This has led to recent revision of the national HBV infection management guidelines. Research on developing new vaccines and therapies is underway and progress has been made with designing potentially curative gene therapies against HBV. This review summarizes research carried out in SA on HBV molecular biology, epidemiology, treatment, and vaccination strategies.


Assuntos
Infecções por HIV , Hepatite B , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Hepatite B/complicações , Hepatite B/epidemiologia , Hepatite B/prevenção & controle , Vacinas contra Hepatite B/uso terapêutico , Vírus da Hepatite B/genética , Humanos , Lactente , África do Sul/epidemiologia
12.
World J Gastroenterol ; 27(23): 3182-3207, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34163105

RESUMO

Global prophylactic vaccination programmes have helped to curb new hepatitis B virus (HBV) infections. However, it is estimated that nearly 300 million people are chronically infected and have a high risk of developing hepatocellular carcinoma. As such, HBV remains a serious health priority and the development of novel curative therapeutics is urgently needed. Chronic HBV infection has been attributed to the persistence of the covalently closed circular DNA (cccDNA) which establishes itself as a minichromosome in the nucleus of hepatocytes. As the viral transcription intermediate, the cccDNA is responsible for producing new virions and perpetuating infection. HBV is dependent on various host factors for cccDNA formation and the minichromosome is amenable to epigenetic modifications. Two HBV proteins, X (HBx) and core (HBc) promote viral replication by modulating the cccDNA epigenome and regulating host cell responses. This includes viral and host gene expression, chromatin remodeling, DNA methylation, the antiviral immune response, apoptosis, and ubiquitination. Elimination of the cccDNA minichromosome would result in a sterilizing cure; however, this may be difficult to achieve. Epigenetic therapies could permanently silence the cccDNA minichromosome and promote a functional cure. This review explores the cccDNA epigenome, how host and viral factors influence transcription, and the recent epigenetic therapies and epigenome engineering approaches that have been described.


Assuntos
Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , DNA Circular/genética , DNA Viral/genética , Epigênese Genética , Hepatite B/genética , Hepatite B/prevenção & controle , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Humanos , Replicação Viral
13.
J Hepatocell Carcinoma ; 8: 1-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33542907

RESUMO

After being overlooked for decades, circular RNAs (circRNAs) have recently generated considerable interest. circRNAs play a role in a variety of normal and pathological biological processes, including hepatocarcinogenesis. Many circRNAs contribute to hepatocarcinogenesis through sponging of microRNAs (miRs) and disruption of cellular signaling pathways that play a part in control of cell proliferation, metastasis and apoptosis. In most cases, overexpressed circRNAs sequester miRs to cause de-repressed translation of mRNAs that encode oncogenic proteins. Conversely, low expression of circRNAs has also been described in hepatocellular carcinoma (HCC) and is associated with inhibited production of tumor suppressor proteins. Other functions of circRNAs that contribute to hepatocarcinogenesis include translation of truncated proteins and acting as adapters to regulate influence of transcription factors on target gene expression. circRNAs also affect hepatocyte transformation indirectly. For example, the molecules regulate immune surveillance of cancerous cells and influence the liver fibrosis that commonly precedes HCC. Marked over- or under-expression of circRNA expression in HCC, with correlating plasma concentrations, has diagnostic utility and assays of these RNAs are being developed as biomarkers of HCC. Although knowledge in the field has recently surged, the myriad of described effects suggests that not all may be vital to hepatocarcinogenesis. Nevertheless, investigation of the role of circRNAs is providing valuable insights that are likely to contribute to improved management of a serious and highly aggressive cancer.

14.
Expert Opin Ther Targets ; 25(6): 451-466, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33843412

RESUMO

Introduction: Current therapy for infection with hepatitis B virus (HBV) rarely clears the virus, and viremia commonly resurges following treatment withdrawal. To prevent serious complications of the infection, research has been aimed at identifying new viral and host targets that can be exploited to inactivate HBV replication.Areas covered: This paper reviews the use of these new molecular targets to advance anti-HBV therapy. Emphasis is on appraising data from pre-clinical and early clinical studies described in journal articles published during the past 10 years and available from PubMed.Expert opinion: The wide range of viral and host factors that can be targeted to disable HBV is impressive and improved insight into HBV molecular biology continues to provide the basis for new drug design. In addition to candidate therapies that have direct or indirect actions on HBV covalently closed circular DNA (cccDNA), compounds that inhibit HBsAg secretion, viral entry, destabilize viral RNA and effect enhanced immune responses to HBV show promise. Preclinical and clinical evaluation of drug candidates, as well as investigating use of treatment combinations, are encouraging. The field is poised at an interesting stage and indications are that reliably achieving functional cure from HBV infection is a tangible goal.


Assuntos
Vírus da Hepatite B , Preparações Farmacêuticas , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Circular , DNA Viral , Humanos , Replicação Viral
15.
Viruses ; 13(7)2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34372550

RESUMO

Persistent hepatitis B virus (HBV) infection remains a serious medical problem worldwide, with an estimated global burden of 257 million carriers. Prophylactic and therapeutic interventions, in the form of a vaccine, immunomodulators, and nucleotide and nucleoside analogs, are available. Vaccination, however, offers no therapeutic benefit to chronic sufferers and has had a limited impact on infection rates. Although immunomodulators and nucleotide and nucleoside analogs have been licensed for treatment of chronic HBV, cure rates remain low. Transcription activator-like effector nucleases (TALENs) designed to bind and cleave viral DNA offer a novel therapeutic approach. Importantly, TALENs can target covalently closed circular DNA (cccDNA) directly with the potential of permanently disabling this important viral replicative intermediate. Potential off-target cleavage by engineered nucleases leading to toxicity presents a limitation of this technology. To address this, in the context of HBV gene therapy, existing TALENs targeting the viral core and surface open reading frames were modified with second- and third-generation FokI nuclease domains. As obligate heterodimers these TALENs prevent target cleavage as a result of FokI homodimerization. Second-generation obligate heterodimeric TALENs were as effective at silencing viral gene expression as first-generation counterparts and demonstrated an improved specificity in a mouse model of HBV replication.


Assuntos
Vírus da Hepatite B/genética , Hepatite B/tratamento farmacológico , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Animais , Animais não Endogâmicos , Antivirais/uso terapêutico , Linhagem Celular , Vírus de DNA/genética , DNA Circular , DNA Viral/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Modelos Animais de Doenças , Endonucleases/genética , Feminino , Terapia Genética/métodos , Células HEK293 , Células Hep G2 , Hepatite B/genética , Hepatite B/imunologia , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Humanos , Camundongos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/uso terapêutico , Replicação Viral/genética
16.
Biochem Biophys Res Commun ; 398(4): 640-6, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20599752

RESUMO

Using exogenous sequences to express RNA interference (RNAi) activators has potential for the treatment of chronic viral infections. However, availability of a variety of suitable of promoter elements is important to optimize transcription control of silencing sequences and facilitate multitargeting. Recent demonstration that tRNA miR genes occur naturally has prompted investigating the incorporation these tRNA Pol III promoters into exogenous RNAi-activating cassettes. We have assessed efficacy of Pol III tRNA(Lys3) short hairpin RNA (shRNA) sequences that target hepatitis B virus (HBV). These cassettes achieved good silencing at low concentrations, and efficacy compared favorably to that of equivalent U6, H1 and CMV expression cassettes. HBV replication in cell culture was inhibited and northern blot hybridization analysis confirmed processing of the tRNA(Lys3) transcripts to form intended antiviral guide sequences. Importantly effects were observed without evidence of disruption of endogenous miR function. Analysis in a murine hydrodynamic injection model of HBV replication confirmed that the tRNA(Lys3) expression cassettes are also effective in vivo. Usefulness of tRNA(Lys3) antiviral expression cassettes expands the repertoire of promoters available for RNAi-mediated HBV silencing and advances the application of expressed sequences for therapeutic gene silencing.


Assuntos
Terapia Genética , Vírus da Hepatite B/fisiologia , Hepatite B/terapia , MicroRNAs/genética , Interferência de RNA , RNA de Transferência de Lisina/genética , Animais , Linhagem Celular , Genes Reporter , Vírus da Hepatite B/genética , Humanos , Camundongos , Regiões Promotoras Genéticas , Replicação Viral
17.
Biochem Biophys Res Commun ; 389(3): 484-9, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19733548

RESUMO

RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Vírus da Hepatite B/fisiologia , Hepatite B/terapia , MicroRNAs/genética , Interferência de RNA , Replicação Viral/genética , Sequência de Bases , Linhagem Celular , DNA/genética , Vírus da Hepatite B/genética , Humanos , Plasmídeos/genética
18.
Biotechniques ; 66(1): 37-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30730207

RESUMO

Generating mRNA in vitro to encode therapeutic or cell-modifying proteins is rapidly gaining favor. An important factor that determines efficiency of translation from in vitro transcribed mRNA is the length of the 3' poly(A) sequence. However, reproducibly generating and maintaining templates from circular plasmids to have consistent lengths of the homo poly(A) sequences is challenging. The procedure reported here entails repeated restriction digestion with type IIS enzymes, ligation and circular plasmid propagation. The homopolymeric sequence of approximately 100 bp that is generated using the method is approximately equal to the number of 3' A residues found in the mRNA of  mammalian cells. Evaluating expression in vivo of a reporter transcript produced using this method showed efficient expression in vivo.


Assuntos
Técnicas Genéticas , Poli A/genética , RNA Mensageiro/genética , DNA Circular , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Plasmídeos , Transcrição Gênica
19.
Hum Gene Ther ; 30(8): 975-984, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31032638

RESUMO

Familial hemophagocytic lymphohistiocytosis (FHL) is a group of life-threatening, autosomal recessive disorders of severe hyperinflammation. FHL type 3 (FHL-3) accounts for about 30% of FHL cases. It is characterized by mutations in the UNC13D gene that give rise to functionally impaired or absent Munc13-4 protein, resulting in impaired secretion of lytic granules by cytotoxic lymphocytes. Etoposide-based therapy is currently used as the standard of care that results in around 60% 5-year survival, illustrating the need for novel treatment approaches. Key problems include treatment toxicity and failure to induce or maintain remission of the hyperinflammation. Instead of immunosuppression, transplantation of autologous gene-corrected T cells can be envisaged as an approach to restore the impaired immune reaction. This study established a protocol that enabled hyperactivated, FHL-3 patient-derived T cells to be cultured and a codon-optimized UNC13D expression cassette to be delivered by either alpha- or gamma-retroviral gene transfer. The data demonstrate that the established protocol can be applied to FHL-3 patient cells with various genetic backgrounds and that gamma-retroviral UNC13D transfer restored expression of functional Munc13-4, as well as degranulation capacity and cell-mediated cytotoxicity of those patient-derived CD8+ T cells. Furthermore, the study shows that the co-introduction of a truncated low-affinity nerve growth factor receptor coding sequence enabled the therapeutic effect to be optimized by enriching transduced cells in a Good Manufacturing Practice-compliant manner. In conclusion, this study lays the foundation for an adaptive immune cell therapy approach aiming at immunological stabilization of FHL-3 patients with autologous, immune-competent T cells prior to hematopoietic stem-cell transplantation.


Assuntos
Citotoxicidade Imunológica/genética , Vetores Genéticos/genética , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/imunologia , Proteínas de Membrana/genética , Retroviridae/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Degranulação Celular/genética , Degranulação Celular/imunologia , Citocinas/biossíntese , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Imunofenotipagem , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/terapia , Fenótipo , Transdução Genética , Transgenes
20.
Genes (Basel) ; 9(4)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649127

RESUMO

Chronic infection with the hepatitis B virus (HBV) is a global health concern and accounts for approximately 1 million deaths annually. Amongst other limitations of current anti-HBV treatment, failure to eliminate the viral covalently closed circular DNA (cccDNA) and emergence of resistance remain the most worrisome. Viral rebound from latent episomal cccDNA reservoirs occurs following cessation of therapy, patient non-compliance, or the development of escape mutants. Simultaneous viral co-infections, such as by HIV-1, further complicate therapeutic interventions. These challenges have prompted development of novel targeted hepatitis B therapies. Given the ease with which highly specific and potent nucleic acid therapeutics can be rationally designed, gene therapy has generated interest for antiviral application. Gene therapy strategies developed for HBV include gene silencing by harnessing RNA interference, transcriptional inhibition through epigenetic modification of target DNA, genome editing by designer nucleases, and immune modulation with cytokines. DNA-binding domains and effectors based on the zinc finger (ZF), transcription activator-like effector (TALE), and clustered regularly interspaced short palindromic repeat (CRISPR) systems are remarkably well suited to targeting episomal cccDNA. This review discusses recent developments and challenges facing the field of anti-HBV gene therapy, its potential curative significance and the progress towards clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA