Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 236(Pt 1): 116704, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481053

RESUMO

Climate change and air pollution are closely interlinked since carbon dioxide and air pollutants are co-emitted from fossil fuel combustion. Net Zero (NZ) policies aiming to reduce carbon emissions will likely bring co-benefits in air quality and associated health. However, it is unknown whether regional NZ policies alone will be sufficient to reduce air pollutant levels to meet the latest 2021 World Health Organisation (WHO) guidelines. Here, we carried out high resolution air quality modelling for in the West Midlands region, a typical metropolitan area in the UK, to quantify the effects of different NZ policies on air quality. Results show that NZ policies will significantly improve air quality in the West Midlands, with up to 6 µg m-3 (21%) reduction in annual mean NO2 (mostly through the electrification of vehicle fleet, EV) and up to 1.4 µg m-3 (12%) reduction in annual mean PM2.5 projected for 2030 relative to levels under a "business as usual" (BAU) scenario. Under BAU, 2030 PM2.5 concentrations in most wards would be below 10 µg m-3 whilst under the Net Zero scenario, those in all wards would be below 10 µg m-3. This means that the ward averages in the West Midlands would meet the UK PM2.5 of 10 µg m-3target a decade early under the Net Zero scenario. However, no ward-level-averaged annual mean PM2.concentrations meet the 2021 WHO Air Quality guideline level of 5 µg m-3 under any scenario. Similarly for NO2 only 18 wards (8% of the region's population) are predicted to have NO2 concentrations below the 2021 WHO guideline level (10 µg m-3). Decarbonisation policies linked to Net Zero deliver substantial regional air quality benefits, but are not in isolation sufficient to deliver clean air with air pollutant levels low enough to meet the 2021 WHO guidelines.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Dióxido de Nitrogênio/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Reino Unido , Monitoramento Ambiental/métodos
2.
Faraday Discuss ; 226: 223-238, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283833

RESUMO

Wintertime urban air pollution in many global megacities is characterised by episodic rapid increase in particulate matter concentrations associated with elevated relative humidity - so-called haze episodes, which have become characteristic of cities such as Beijing. Atmospheric chemistry within haze combines gas- and condensed-phase chemical processes, leading to the growth in secondary species such as sulphate aerosols. Here, we integrate observations of reactive gas phase species (HONO, OH, NOx) and time-resolved aerosol composition, to explore observational constraints on the mechanisms responsible for sulphate growth during the onset of haze events. We show that HONO abundance is dominated by established fast gas-phase photochemistry, but the consideration of the additional formation potentially associated with condensed-phase oxidation of S species by aqueous NO2 leading to NO2- production and hence HONO release, improves agreement between observed and calculated gas-phase HONO levels. This conclusion is highly dependent upon aerosol pH, ionic strength and particularly the parameterisation employed for S(iv) oxidation kinetics, for which an upper limit is derived.

3.
Faraday Discuss ; 189: 191-212, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27105044

RESUMO

A substantial body of recent literature has shown that boundary layer HONO levels are higher than can be explained by simple, established gas-phase chemistry, to an extent that implies that additional HONO sources represent a major, or the dominant, precursor to OH radicals in such environments. This conclusion may be reached by analysis of point observations of (for example) OH, NO and HONO, alongside photochemical parameters; however both NO and HONO have non-negligible atmospheric lifetimes, so these approaches may be problematic if substantial spatial heterogeneity exists. We report a new dataset of HONO, NOx and HOx observations recorded at an urban background location, which support the existence of additional HONO sources as determined elsewhere. We qualitatively evaluate the possible impacts of local heterogeneity using a series of idealised numerical model simulations, building upon the work of Lee et al. (J. Geophys. Res., 2013, DOI: 10.1002/2013JD020341). The simulations illustrate the time required for photostationary state approaches to yield accurate results following substantial perturbations in the HOx/NOx/NOy chemistry, and the scope for bias to an inferred HONO source from NOx and VOC emissions in either a positive or negative sense, depending upon the air mass age following emission. To assess the extent to which these impacts may be present in actual measurements, we present exploratory spatially resolved measurements of HONO and NOx abundance obtained using a mobile instrumented laboratory. Measurements of the spatial variability of HONO in urban, suburban and rural environments show pronounced changes in abundance are found in proximity to major roads within urban areas, indicating that photo-stationary steady state (PSS) analyses in such areas are likely to be problematic. The measurements also show areas of very homogeneous HONO and NOx abundance in rural, and some suburban, regions, where the PSS approach is likely to be valid. Implications for future exploration of HONO production mechanisms are discussed.

9.
Environ Sci Technol ; 49(22): 13168-78, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26473383

RESUMO

Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.


Assuntos
Hidrocarbonetos Aromáticos/química , Luz , Material Particulado/análise , Derivados de Alilbenzenos , Anisóis/química , Atmosfera/química , Umidade , Nitrofenóis/análise , Oxidantes/química , Oxirredução/efeitos da radiação , Temperatura , Fatores de Tempo , Tolueno/química , Compostos Orgânicos Voláteis/análise
10.
Phys Chem Chem Phys ; 17(6): 4076-88, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25562069

RESUMO

The removal of SO2 in the presence of alkene-ozone systems has been studied for ethene, cis-but-2-ene, trans-but-2-ene and 2,3-dimethyl-but-2-ene, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity for all four alkene-ozone systems confirming a significant reaction for stabilised Criegee intermediates (SCI) with H2O. The observed SO2 removal kinetics are consistent with relative rate constants, k(SCI + H2O)/k(SCI + SO2), of 3.3 (±1.1) × 10(-5) for CH2OO, 26 (±10) × 10(-5) for CH3CHOO derived from cis-but-2-ene, 33 (±10) × 10(-5) for CH3CHOO derived from trans-but-2-ene, and 8.7 (±2.5) × 10(-5) for (CH3)2COO derived from 2,3-dimethyl-but-2-ene. The relative rate constants for k(SCI decomposition)/k(SCI + SO2) are -2.3 (±3.5) × 10(11) cm(-3) for CH2OO, 13 (±43) × 10(11) cm(-3) for CH3CHOO derived from cis-but-2-ene, -14 (±31) × 10(11) cm(-3) for CH3CHOO derived from trans-but-2-ene and 63 (±14) × 10(11) cm(-3) for (CH3)2COO. Uncertainties are ±2σ and represent combined systematic and precision components. These values are derived following the approximation that a single SCI is present for each system; a more comprehensive interpretation, explicitly considering the differing reactivity for syn- and anti-SCI conformers, is also presented. This yields values of 3.5 (±3.1) × 10(-4) for k(SCI + H2O)/k(SCI + SO2) of anti-CH3CHOO and 1.2 (±1.1) × 10(13) for k(SCI decomposition)/k(SCI + SO2) of syn-CH3CHOO. The reaction of the water dimer with CH2OO is also considered, with a derived value for k(CH2OO + (H2O)2)/k(CH2OO + SO2) of 1.4 (±1.8) × 10(-2). The observed SO2 removal rate constants, which technically represent upper limits, are consistent with decomposition being a significant, structure dependent, sink in the atmosphere for syn-SCI.

11.
Environ Pollut ; : 123871, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729507

RESUMO

Poor air quality is the largest environmental health risk in England. In the West Midlands, UK, ∼2.9 million people are affected by air pollution with an average loss in life expectancy of up to 6 months. The 2021 Environment Act established a legal framework for local authorities in England to develop regional air quality plans, generating a policy need for predictive environmental impact assessment tools. In this context, we developed a novel Air Quality Lifecourse Assessment Tool (AQ-LAT) to estimate electoral ward-level impacts of PM2.5 and NO2 exposure on outcomes of interest to local authorities, namely morbidity (asthma, coronary heart disease (CHD), stroke, lung cancer), mortality, and associated healthcare costs. We apply the Tool to assess the health economic burden of air pollutant exposure and estimate benefits that would be generated by meeting WHO 2021 Global Air Quality Guidelines (AQGs) (annual average concentrations) for NO2 (10 µg/m3) and PM2.5 (5 µg/m3) in the West Midlands Combined Authority Area. All West Midlands residents live in areas which exceed WHO AQGs, with 2070 deaths, 2070 asthma diagnoses, 770 CHD diagnoses, 170 lung cancers and 650 strokes attributable to air pollution exposure annually. Reducing PM2.5 and NO2 concentrations to WHO AQGs would save 10,700 lives reducing regional mortality by 1.8%, gaining 92,000 quality-adjusted life years (QALYs), and preventing 20,500 asthma, 7400 CHD, 1400 lung cancer, and 5700 stroke diagnoses, with economic benefits of £3.2 billion over 20 years. Significantly, we estimate 30% of QALY gains relate to reduced disease burden. The AQ-LAT has major potential to be replicated across local authorities in England and applied to inform regional investment decisions.

12.
Phys Chem Chem Phys ; 15(40): 17070-5, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24030640

RESUMO

Formation of the NO3 radical was observed following photolysis of the CH2I2 + O2 system at 248 nm under ambient atmospheric boundary layer conditions (~760 Torr and 297 K) in the presence of NO2. The Criegee intermediate (CI) CH2OO is believed to be responsible for the NO3 production. The potential of such reactions to enhance the rate of NO3 production in the atmosphere is discussed.

13.
J Phys Chem A ; 117(47): 12468-83, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24171583

RESUMO

The gas-phase reaction of ozone with unsaturated volatile organic compounds (VOCs), alkenes, is an important source of the critical atmospheric oxidant OH, especially at night when other photolytic radical initiation routes cannot occur. Alkene ozonolysis is also known to directly form HO2 radicals, which may be readily converted to OH through reaction with NO, but whose formation is poorly understood. We report a study of the radical (OH, HO2, and RO2) production from a series of small alkenes (propene, 1-butene, cis-2-butene, trans-2-butene, 2-methylpropene, 2,3-dimethyl-2-butene (tetramethyl ethene, TME), and isoprene). Experiments were performed in the European Photoreactor (EUPHORE) atmospheric simulation chamber, with OH and HO2 levels directly measured by laser-induced fluorescence (LIF) and HO2 + ΣRO2 levels measured by peroxy-radical chemical amplification (PERCA). OH yields were found to be in good agreement with the majority of previous studies performed under comparable conditions (atmospheric pressure, long time scales) using tracer and scavenger approaches. HO2 yields ranged from 4% (trans-2-butene) to 34% (2-methylpropene), lower than previous experimental determinations. Increasing humidity further reduced the HO2 yields obtained, by typically 50% for an RH increase from 0.5 to 30%, suggesting that HOx production from alkene ozonolysis may be lower than current models suggest under (humid) ambient atmospheric boundary layer conditions. The mechanistic origin of the OH and HO2 production observed is discussed in the context of previous experimental and theoretical studies.


Assuntos
Alcenos/química , Atmosfera/química , Radical Hidroxila/síntese química , Ozônio/química , Peróxidos/síntese química , Radical Hidroxila/química , Estrutura Molecular , Peróxidos/química
14.
Sci Total Environ ; 900: 165537, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37454853

RESUMO

Vehicles are the third most occupied microenvironment, other than home and workplace, in developed urban areas. Vehicle cabins are confined spaces where occupants can mitigate their exposure to on-road nitrogen dioxide (NO2) and fine particulate matter (PM2.5) concentrations. Understanding which parameters exert the greatest influence on in-vehicle exposure underpins advice to drivers and vehicle occupants in general. This study assessed the in-vehicle NO2 and PM2.5 levels and developed stepwise general additive mixed models (sGAMM) to investigate comprehensively the combined and individual influences of factors that influence the in-vehicle exposures. The mean in-vehicle levels were 19 ± 18 and 6.4 ± 2.7 µg/m3 for NO2 and PM2.5, respectively. sGAMM model identified significant factors explaining a large fraction of in-vehicle NO2 and PM2.5 variability, R2 = 0.645 and 0.723, respectively. From the model's explained variability on-road air pollution was the most important predictor accounting for 22.3 and 30 % of NO2 and PM2.5 variability, respectively. Vehicle-based predictors included manufacturing year, cabin size, odometer reading, type of cabin filter, ventilation fan speed power, window setting, and use of air recirculation, and together explained 48.7 % and 61.3 % of NO2 and PM2.5 variability, respectively, with 41.4 % and 51.9 %, related to ventilation preference and type of filtration media, respectively. Driving-based parameters included driving speed, traffic conditions, traffic lights, roundabouts, and following high emitters and accounted for 22 and 7.4 % of in-vehicle NO2 and PM2.5 exposure variability, respectively. Vehicle occupants can significantly reduce their in-vehicle exposure by moderating vehicle ventilation settings and by choosing an appropriate cabin air filter.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio , Emissões de Veículos/análise , Monitoramento Ambiental , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Material Particulado/análise , Exposição Ambiental/análise
15.
Sci Total Environ ; 860: 160395, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36427737

RESUMO

Traffic related nitrogen dioxide (NO2) poses a serious environmental and health risk factor in the urban environment. Drivers and vehicle occupants in general may have acute exposure to NO2 levels. In order to identify key controllable measures to reduce vehicle occupant's exposure, this study measures NO2 exposure inside ten different vehicles under real world driving conditions and applies a targeted intervention by replacing previously used filters with new standard pollen and new activated carbon cabin filters. The study also evaluates the efficiency of the latter as a function of duration of use. The mean in-vehicle NO2 exposure across the tested vehicles, driving the same route under comparable traffic and ambient air quality conditions, was 50.8 ± 32.7 µg/m3 for the new standard pollen filter tests and 9.2 ± 8.6 µg/m3 for the new activated carbon filter tests. When implementing the new activated carbon filters, overall we observed significant (p < 0.05) reductions by 87 % on average (range 80 - 94.2 %) in the in-vehicle NO2 levels compared to the on-road concentrations. We further found that the activated carbon filter NO2 removal efficiency drops by 6.8 ± 0.6 % per month; showing a faster decay in removal efficiency after the first 6 months of use. These results offer novel insights into how the general population can control and reduce their exposure to traffic related NO2. The use and regular replacement of activated carbon cabin air filters represents a relatively inexpensive method to significantly reduce in-vehicle NO2 exposure.


Assuntos
Filtros de Ar , Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Carvão Vegetal , Fatores de Risco , Emissões de Veículos/prevenção & controle , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise
16.
Environ Int ; 181: 108273, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37897872

RESUMO

Ultrafine particles (UFPs) are respirable particles with a diameter less than 100 nm, which some studies have associated with adverse effects upon health. UFPs are currently not regulated as the health evidence is insufficient and very few observational data are available in most cities. The 2021 WHO Global Air Quality Guidelines highlighted the pressing issue of UFPs and provided a good practice statement for UFPs, which recommends that more measurement and modelling studies are implemented in future. Particle number concentrations (PNC) are the most common metric for UFPs as this fraction normally dominates the total ambient PNC in urban environments. This study simulates the dispersion of particle number concentrations in the West Midlands (a metropolitan area), UK using the local scale ADMS-Urban model, which is an advanced quasi-Gaussian plume dispersion modelling system. ADMS-Urban implements a physics-based approach to represent the characteristics of the atmospheric boundary layer and has been widely used in the dispersion modelling of air pollutants. It can represent a variety of source types (such as road and grid emissions) occurring in urban environments and requires a range of input data. Particle number was used as a passive scalar, with no inclusion of aerosol microphysics within the model, as a first implementation in the ADMS-Urban model for the West Midlands, UK. Evaluation was conducted by comparing the modelled (from a receptor run) and measured data at the Birmingham Air Quality Supersite. Overall, the model performed well although there was a slight underestimation for PNC. Based on the modelling output from a contour run, PNC maps at a variety of spatial scales (i.e. street scale, ward level and local authority level) and temporal resolutions (i.e. annual, 24-hour, and 1-hour) were generated. PNC mapping could be linked to local population and health data for potential epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Tamanho da Partícula , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/análise , Cidades , Reino Unido , Emissões de Veículos/análise
17.
Sci Adv ; 9(3): eadd6266, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652523

RESUMO

Particulate nitrate ([Formula: see text]) has long been considered a permanent sink for NOx (NO and NO2), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NOx back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in "renoxification" photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text], thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies. Active release of HONO from aerosol has important implications for atmospheric oxidants such as OH and O3 in both polluted and clean environments.

18.
Environ Sci Technol Lett ; 10(6): 520-527, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333938

RESUMO

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period.

19.
Chemosphere ; 300: 134608, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430204

RESUMO

China has implemented two national clean air actions in 2013-2017 and 2018-2020, respectively, with the aim of reducing primary emissions and hence improving air quality at a national level. It is important to examine the effectiveness of such emission reductions and assess the resulting changes in air quality. However, such evaluation is difficult as meteorological factors can amplify, or obscure the changes of air pollutants, in addition to the emission reduction. In this study, we applied the random forest machine learning technique to decouple meteorological influences from emissions changes, and examined the deweathered trends of air pollutants in 12 Chinese mega-cities during 2013-2020. The observed concentrations of all criteria pollutants except O3 showed significant declines from 2013 to 2020, with PM2.5 annual decline rates of 6-9% in most cities. In contrast, O3 concentrations increased with annual growth rates of 1-9%. Compared with the observed results, all the pollutants showed smoothed but similar variation in trend and annual rate-of-change after weather normalization. The response of O3 to NO2 concentrations indicated significant regional differences in photochemical regimes, and the differences between observed and deweathered results provided implications for volatile organic compound emission reductions in O3 pollution mitigation. We further evaluated the effectiveness of first and second clean air actions by removing the meteorological influence. We found that the meteorology can make negative or positive contribution in reducing pollutant concentrations from emission reduction, depending on type of pollutants, locations, and time period. Among the 12 mega-cities, only Beijing showed a positive meteorological contribution in amplifying reductions in main pollutants except O3 during both clean air action periods. Considering the large and variable impact of meteorological effects in changing air quality, we suggest that similar deweathered analysis is needed as a routine policy evaluation tool on a regional basis.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Monitoramento Ambiental/métodos , Aprendizado de Máquina , Material Particulado/análise
20.
Sci Rep ; 12(1): 20820, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460705

RESUMO

Worldwide lockdown reduced air pollution during the first phase of the COVID-19 pandemic. The relationship between exposure to ambient air pollution, digital display device use and dry eye symptoms amongst patients with severe ocular surface disease (OSD) were considered. Symptoms and air pollutant concentrations for three different time periods (pre, during and post COVID-19 lockdown) were analysed in 35 OSD patients who achieved an immunosuppression risk-stratification score > 3 fulfilling the UK Government criteria for 12-week shielding. OSDI symptoms questionnaire, residential postcode air pollution data obtained from the Defra Automated Urban and Rural monitoring network for concentrations of nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter (PM) with diameters below 10 µm and 2.5 µm, and English Indices of Deprivation were analysed. Significant reductions in NO2 and NOx concentrations were observed between pre- and during-lockdown periods, followed by a reversal in the post-lockdown period. Changes were linked to the Living Environment outdoor decile. A 12% increase (p = 0.381) in symptomatology during-lockdown was observed that reversed post-lockdown by 19% (p = 0.144). OSDI scores were significantly correlated with hours spent on digital devices (r2 = 0.243) but not with air pollutant concentrations. Lockdown measures reduced ambient air pollutants whilst OSD symptomatology persisted. Environmental factors such as increased time indoors and use of bluescreen digital devices may have partly played a role.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Oftalmopatias , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Dióxido de Nitrogênio , Pandemias , Controle de Doenças Transmissíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA