Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Blood ; 136(21): 2457-2468, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32678895

RESUMO

Congenital erythropoietic porphyria (CEP) is an inborn error of heme synthesis resulting from uroporphyrinogen III synthase (UROS) deficiency and the accumulation of nonphysiological porphyrin isomer I metabolites. Clinical features are heterogeneous among patients with CEP but usually combine skin photosensitivity and chronic hemolytic anemia, the severity of which is related to porphyrin overload. Therapeutic options include symptomatic strategies only and are unsatisfactory. One promising approach to treating CEP is to reduce the erythroid production of porphyrins through substrate reduction therapy by inhibiting 5-aminolevulinate synthase 2 (ALAS2), the first and rate-limiting enzyme in the heme biosynthetic pathway. We efficiently reduced porphyrin accumulation after RNA interference-mediated downregulation of ALAS2 in human erythroid cellular models of CEP disease. Taking advantage of the physiological iron-dependent posttranscriptional regulation of ALAS2, we evaluated whether iron chelation with deferiprone could decrease ALAS2 expression and subsequent porphyrin production in vitro and in vivo in a CEP murine model. Treatment with deferiprone of UROS-deficient erythroid cell lines and peripheral blood CD34+-derived erythroid cultures from a patient with CEP inhibited iron-dependent protein ALAS2 and iron-responsive element-binding protein 2 expression and reduced porphyrin production. Furthermore, porphyrin accumulation progressively decreased in red blood cells and urine, and skin photosensitivity in CEP mice treated with deferiprone (1 or 3 mg/mL in drinking water) for 26 weeks was reversed. Hemolysis and iron overload improved upon iron chelation with full correction of anemia in CEP mice treated at the highest dose of deferiprone. Our findings highlight, in both mouse and human models, the therapeutic potential of iron restriction to modulate the phenotype in CEP.


Assuntos
Anemia Hemolítica/tratamento farmacológico , Deferiprona/uso terapêutico , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Transtornos de Fotossensibilidade/tratamento farmacológico , Porfiria Eritropoética/tratamento farmacológico , 5-Aminolevulinato Sintetase/antagonistas & inibidores , 5-Aminolevulinato Sintetase/biossíntese , 5-Aminolevulinato Sintetase/genética , Adulto , Anemia Hemolítica/etiologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Feminino , Técnicas de Introdução de Genes , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/etiologia , Leucemia Eritroblástica Aguda/patologia , Camundongos , Células-Tronco de Sangue Periférico/efeitos dos fármacos , Células-Tronco de Sangue Periférico/metabolismo , Transtornos de Fotossensibilidade/etiologia , Porfiria Aguda Intermitente/metabolismo , Porfiria Eritropoética/complicações , Porfirinas/biossíntese , Interferência de RNA , RNA Interferente Pequeno/farmacologia
2.
Hum Mol Genet ; 26(8): 1565-1576, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334762

RESUMO

Congenital erythropoietic porphyria (CEP) is an inborn error of heme biosynthesis characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in deleterious porphyrin accumulation in blood cells responsible for hemolytic anemia and cutaneous photosensitivity. We analyzed here the molecular basis of UROS impairment associated with twenty nine UROS missense mutations actually described in CEP patients. Using a computational and biophysical joint approach we predicted that most disease-causing mutations would affect UROS folding and stability. Through the analysis of enhanced green fluorescent protein-tagged versions of UROS enzyme we experimentally confirmed these data and showed that thermodynamic instability and premature protein degradation is a major mechanism accounting for the enzymatic deficiency associated with twenty UROS mutants in human cells. Since the intracellular loss in protein homeostasis is in excellent agreement with the in vitro destabilization, we used molecular dynamic simulation to rely structural 3D modification with UROS disability. We found that destabilizing mutations could be clustered within three types of mechanism according to side chain rearrangements or contact alterations within the pathogenic UROS enzyme so that the severity degree correlated with cellular protein instability. Furthermore, proteasome inhibition using bortezomib, a clinically available drug, significantly enhanced proteostasis of each unstable UROS mutant. Finally, we show evidence that abnormal protein homeostasis is a prevalent mechanism responsible for UROS deficiency and that modulators of UROS proteolysis such as proteasome inhibitors or chemical chaperones may represent an attractive therapeutic option to reduce porphyrin accumulation and prevent skin photosensitivity in CEP patients when the genotype includes a missense variant.


Assuntos
Mutação de Sentido Incorreto/genética , Porfiria Eritropoética/genética , Relação Estrutura-Atividade , Uroporfirinogênio III Sintetase/genética , Biologia Computacional , Homeostase , Humanos , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Dobramento de Proteína , Uroporfirinogênio III Sintetase/química
3.
Biochem Biophys Res Commun ; 517(4): 677-683, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402115

RESUMO

Primary hyperoxaluria type 1 (PH1) is an inherited metabolic disorder caused by a deficiency of the peroxisomal enzyme alanine-glyoxylate aminotransferase (AGT), which leads to overproduction of oxalate by the liver and results in urolithiasis, nephrocalcinosis and renal failure. The only curative treatment for PH1 is combined liver and kidney transplantation, which is limited by the lack of suitable organs, significant complications, and the life-long requirement for immunosuppressive agents to maintain organ tolerance. Hepatocyte-like cells (HLCs) generated from CRISPR/Cas9 genome-edited human-induced pluripotent stem cells would offer an attractive unlimited source of autologous gene-corrected liver cells as an alternative to orthotopic liver transplantation (OLT). Here we report the CRISPR/Cas9 nuclease-mediated gene targeting of a single-copy AGXT therapeutic minigene into the safe harbour AAVS1 locus in PH1-induced pluripotent stem cells (PH1-iPSCs) without off-target inserts. We obtained a robust expression of a codon-optimized AGT in HLCs derived from AAVS1 locus-edited PH1-iPSCs. Our study provides the proof of concept that CRISPR/Cas9-mediated integration of an AGXT minigene into the AAVS1 safe harbour locus in patient-specific iPSCs is an efficient strategy to generate functionally corrected hepatocytes, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of PH1.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Terapia Genética , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia , Células-Tronco Pluripotentes Induzidas/patologia , Animais , Sequência de Bases , Loci Gênicos , Vetores Genéticos/metabolismo , Hepatócitos/citologia , Humanos , Camundongos
4.
Biochem Biophys Res Commun ; 520(2): 297-303, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31601421

RESUMO

Clinical severity is heterogeneous among patients suffering from congenital erythropoietic porphyria (CEP) suggesting a modulation of the disease (UROS deficiency) by environmental factors and modifier genes. A KI model of CEP due to a missense mutation of UROS gene present in human has been developed on 3 congenic mouse strains (BALB/c, C57BL/6, and 129/Sv) in order to study the impact of genetic background on disease severity. To detect putative modifiers of disease expression in congenic mice, hematologic data, iron parameters, porphyrin content and tissue samples were collected. Regenerative hemolytic anemia, a consequence of porphyrin excess in RBCs, had various expressions: 129/Sv mice were more hemolytic, BALB/c had more regenerative response to anemia, C57BL/6 were less affected. Iron status and hemolysis level were directly related: C57BL/6 and BALB/c had moderate hemolysis and active erythropoiesis able to reduce iron overload in the liver, while, 129/Sv showed an imbalance between iron release due to hemolysis and erythroid use. The negative control of hepcidin on the ferroportin iron exporter appeared strain specific in the CEP mice models tested. Full repression of hepcidin was observed in BALB/c and 129/Sv mice, favoring parenchymal iron overload in the liver. Unchanged hepcidin levels in C57BL/6 resulted in retention of iron predominantly in reticuloendothelial tissues. These findings open the field for potential therapeutic applications in the human disease, of hepcidin agonists and iron depletion in chronic hemolytic anemia.


Assuntos
Hepcidinas/metabolismo , Ferro/metabolismo , Porfiria Eritropoética/genética , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Feminino , Hemólise , Hepcidinas/genética , Sobrecarga de Ferro/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Porfiria Eritropoética/etiologia , Porfiria Eritropoética/metabolismo , Porfirinas/metabolismo , Uroporfirinogênio III Sintetase/genética
6.
Proc Natl Acad Sci U S A ; 110(45): 18238-43, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145442

RESUMO

Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones.


Assuntos
Modelos Moleculares , Porfiria Eritropoética/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Uroporfirinogênio III Sintetase/genética , Uroporfirinogênio III Sintetase/metabolismo , Animais , Western Blotting , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Dicroísmo Circular , Primers do DNA/genética , Células Eritroides/metabolismo , Humanos , Camundongos , Mutação de Sentido Incorreto/genética , Porfiria Eritropoética/genética , Porfirinas/sangue , Porfirinas/urina , Dobramento de Proteína , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Fluorescência , Uroporfirinogênio III Sintetase/química
7.
Am J Physiol Gastrointest Liver Physiol ; 307(4): G459-70, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24970777

RESUMO

High-protein diets are used for body weight reduction, but consequences on the large intestine ecosystem are poorly known. Here, rats were fed for 15 days with either a normoproteic diet (NP, 14% protein) or a hyperproteic-hypoglucidic isocaloric diet (HP, 53% protein). Cecum and colon were recovered for analysis. Short- and branched-chain fatty acids, as well as lactate, succinate, formate, and ethanol contents, were markedly increased in the colonic luminal contents of HP rats (P < 0.05 or less) but to a lower extent in the cecal luminal content. This was associated with reduced concentrations of the Clostridium coccoides and C. leptum groups and Faecalibacterium prausnitzii in both the cecum and colon (P < 0.05 or less). In addition, the microbiota diversity was found to be higher in the cecum of HP rats but was lower in the colon compared with NP rats. In HP rats, the colonic and cecal luminal content weights were markedly higher than in NP rats (P < 0.001), resulting in similar butyrate, acetate, and propionate concentrations. Accordingly, the expression of monocarboxylate transporter 1 and sodium monocarboxylate transporter 1 (which is increased by higher butyrate concentration) as well as the colonocyte capacity for butyrate oxidation were not modified by the HP diet, whereas the amount of butyrate in feces was increased (P < 0.01). It is concluded that an increased bulk in the large intestine content following HP diet consumption allows maintenance in the luminal butyrate concentration and thus its metabolism in colonocytes despite modified microbiota composition and increased substrate availability.


Assuntos
Colo/metabolismo , Proteínas Alimentares/administração & dosagem , Conteúdo Gastrointestinal/microbiologia , Microbiota/efeitos dos fármacos , Animais , Butiratos/metabolismo , Ceco/metabolismo , Clostridium , Colo/citologia , Proteínas Alimentares/farmacologia , Metabolismo Energético , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Intestino Grosso/metabolismo , Masculino , Ratos , Ratos Wistar
8.
Life (Basel) ; 14(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255745

RESUMO

(1) Background: Congenital erythropoietic porphyria (CEP), named Günther's disease, is a rare recessive type of porphyria, resulting from deficient uroporphyrinogen III synthase (UROS), the fourth enzyme of heme biosynthesis. The phenotype ranges from extremely severe perinatal onset, with life-threatening hemolytic anaemia, to mild or moderate cutaneous involvement in late-onset forms. This work reviewed the perinatal CEP cases recorded in France in order to analyse their various presentations and evolution. (2) Methods: Clinical and biological data were retrospectively collected through medical and published records. (3) Results: Twenty CEP cases, who presented with severe manifestations during perinatal period, were classified according to the main course of the disease: antenatal features, acute neonatal distress and postnatal diagnosis. Antenatal symptoms (seven patients) were mainly hydrops fetalis, hepatosplenomegaly, anemia, and malformations. Six of them died prematurely. Five babies showed acute neonatal distress, associated with severe anemia, thrombocytopenia, hepatosplenomegaly, liver dysfunction, and marked photosensitivity leading to diagnosis. The only two neonates who survived underwent hematopoietic stem cell transplantation (HSCT). Common features in post-natal diagnosis (eight patients) included hemolytic anemia, splenomegaly, skin sensitivity, and discoloured teeth and urine. All patients underwent HSCT, with success for six of them, but with fatal complications in two patients. The frequency of the missense variant named C73R is striking in antenatal and neonatal presentations, with 9/12 and 7/8 independent alleles, respectively. (4) Conclusions: The most recent cases in this series are remarkable, as they had a less fatal outcome than expected. Regular transfusions from the intrauterine period and early access to HSCT are the main objectives.

9.
Mol Ther Oncol ; 32(1): 200772, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596305

RESUMO

Thanks to its very high genome-editing efficiency, CRISPR-Cas9 technology could be a promising anticancer weapon. Clinical trials using CRISPR-Cas9 nuclease to ex vivo edit and alter immune cells are ongoing. However, to date, this strategy still has not been applied in clinical practice to directly target cancer cells. Targeting a canonical metabolic pathway essential to good functioning of cells without potential escape would represent an attractive strategy. We propose to mimic a genetic metabolic disorder in cancer cells to weaken cancer cells, independent of their genomic abnormalities. Mutations affecting the heme biosynthesis pathway are responsible for porphyria, and most of them are characterized by an accumulation of toxic photoreactive porphyrins. This study aimed to mimic porphyria by using CRISPR-Cas9 to inactivate UROS, leading to porphyrin accumulation in a prostate cancer model. Prostate cancer is the leading cancer in men and has a high mortality rate despite therapeutic progress, with a primary tumor accessible to light. By combining light with gene therapy, we obtained high efficiency in vitro and in vivo, with considerable improvement in the survival of mice. Finally, we achieved the preclinical proof-of-principle of performing cancer CRISPR gene therapy.

10.
Mol Genet Metab Rep ; 39: 101076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38601120

RESUMO

Acute hepatic porphyrias are inherited metabolic disorders of heme biosynthesis characterized by the accumulation of toxic intermediate metabolites responsible for disabling acute neurovisceral attacks. Givosiran is a newly approved siRNA-based treatment of acute hepatic porphyria targeting the first and rate-limiting δ-aminolevulinic acid synthase 1 (ALAS1) enzyme of heme biosynthetic pathway. We described a 72-year old patient who presented with severe inaugural neurological form of acute intermittent porphyria evolving for several years which made her eligible for givosiran administration. On initiation of treatment, the patient developed a major hyperhomocysteinemia (>400 µmol/L) which necessitated to discontinue the siRNA-based therapy. A thorough metabolic analysis in the patient suggests that hyperhomocysteinemia could be attributed to a functional deficiency of cystathionine ß-synthase (CBS) enzyme induced by givosiran. Long-term treatment with vitamin B6, a cofactor of CBS, allowed to normalize homocysteinemia while givosiran treatment was maintained. We review the recently published cases of hyperhomocysteinemia in acute hepatic porphyria and its exacerbation under givosiran therapy. We also discuss the benefits of vitamin B6 supplementation in the light of hypothetic pathophysiological mechanisms responsible for hyperhomocysteinemia in these patients. Our results confirmed the importance of monitoring homocysteine metabolism and vitamin status in patients with acute intermittent porphyria in order to improve management by appropriate vitamin supplementation during givosiran treatment.

11.
Br J Nutr ; 110(4): 625-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23321004

RESUMO

Lactose malabsorption is associated with rapid production of high levels of osmotic compounds, such as organic acids and SCFA in the colon, suspected to contribute to the onset of lactose intolerance. Adult rats are lactase deficient and the present study was conducted to evaluate in vivo the metabolic consequences of acute lactose ingestion, including host-microbiota interactions. Rats received diets of 25% sucrose (S25 control group) or 25% lactose (L25 experimental group). SCFA and lactic acid were quantified in intestinal contents and portal blood. Expression of SCFA transporter genes was quantified in the colonic mucosa. Carbohydrate oxidation (Cox) and lipid oxidation (Lox) were computed by indirect calorimetry. Measurements were performed over a maximum of 13 h. Time, diet and time × diet variables had significant effects on SCFA concentration in the caecum (P<0·001, P=0·004 and P=0·007, respectively) and the portal blood (P<0·001, P=0·04 and P<0·001, respectively). Concomitantly, expression of sodium monocarboxylate significantly increased in the colonic mucosa of the L25 group (P=0·003 at t = 6 h and P<0·05 at t = 8 h). During 5 h after the meal, the L25 group's changes in metabolic parameters (Cox, Lox) were significantly lower than those of the S25 group (P=0·02). However, after 5 h, L25 Cox became greater than S25 (P=0·004). Thus, enhanced production and absorption of SCFA support the metabolic changes observed in calorimetry. These results underline the consequences of acute lactose malabsorption and measured compensations occurring in the host's metabolism, presumably through the microbiota fermentations and microbiota-host interactions.


Assuntos
Colo/metabolismo , Fermentação , Intolerância à Lactose/metabolismo , Ração Animal , Animais , Metabolismo dos Carboidratos , Colo/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactase/metabolismo , Lactose/metabolismo , Metabolismo dos Lipídeos , Masculino , Oxigênio/metabolismo , Ratos , Ratos Wistar
12.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077783

RESUMO

Radiosensitization of glioblastoma is a major ambition to increase the survival of this incurable cancer. The 5-aminolevulinic acid (5-ALA) is metabolized by the heme biosynthesis pathway. 5-ALA overload leads to the accumulation of the intermediate fluorescent metabolite protoporphyrin IX (PpIX) with a radiosensitization potential, never tested in a relevant model of glioblastoma. We used a patient-derived tumor cell line grafted orthotopically to create a brain tumor model. We evaluated tumor growth and tumor burden after different regimens of encephalic multifractionated radiation therapy with or without 5-ALA. A fractionation scheme of 5 × 2 Gy three times a week resulted in intermediate survival [48-62 days] compared to 0 Gy (15-24 days), 3 × 2 Gy (41-47 days) and, 5 × 3 Gy (73-83 days). Survival was correlated to tumor growth. Tumor growth and survival were similar after 5 × 2 Gy irradiations, regardless of 5-ALA treatment (RT group (53-67 days), RT+5-ALA group (40-74 days), HR = 1.57, p = 0.24). Spheroid growth and survival were diminished by radiotherapy in vitro, unchanged by 5-ALA pre-treatment, confirming the in vivo results. The analysis of two additional stem-like patient-derived cell lines confirmed the absence of radiosensitization by 5-ALA. Our study shows for the first time that in a preclinical tumor model relevant to human glioblastoma, treated as in clinical routine, 5-ALA administration, although leading to important accumulation of PpIX, does not potentiate radiotherapy.

13.
Int J Cancer ; 128(11): 2591-601, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20715114

RESUMO

Butyrate, a short-chain fatty acid produced by the colonic bacterial fermentation is able to induce cell growth inhibition and differentiation in colon cancer cells at least partially through its capacity to inhibit histone deacetylases. Since butyrate is expected to impact cellular metabolic pathways in colon cancer cells, we hypothesize that it could exert its antiproliferative properties by altering cellular metabolism. We show that although Caco2 colon cancer cells oxidized both butyrate and glucose into CO(2) , they displayed a higher oxidation rate with butyrate as substrate than with glucose. Furthermore, butyrate pretreatment led to an increase cell capacity to oxidize butyrate and a decreased capacity to oxidize glucose, suggesting that colon cancer cells, which are initially highly glycolytic, can switch to a butyrate utilizing phenotype, and preferentially oxidize butyrate instead of glucose as energy source to produce acetyl coA. Butyrate pretreated cells displayed a modulation of glutamine metabolism characterized by an increased incorporation of carbons derived from glutamine into lipids and a reduced lactate production. The butyrate-stimulated glutamine utilization is linked to pyruvate dehydrogenase complex since dichloroacetate reverses this effect. Furthermore, butyrate positively regulates gene expression of pyruvate dehydrogenase kinases and this effect involves a hyperacetylation of histones at PDK4 gene promoter level. Our data suggest that butyrate exerts two distinct effects to ensure the regulation of glutamine metabolism: it provides acetyl coA needed for fatty acid synthesis, and it also plays a role in the control of the expression of genes involved in glucose utilization leading to the inactivation of PDC.


Assuntos
Adenocarcinoma/metabolismo , Butiratos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Adenocarcinoma/tratamento farmacológico , Western Blotting , Imunoprecipitação da Cromatina , Neoplasias do Colo/tratamento farmacológico , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Oxirredução , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
14.
Mol Genet Metab Rep ; 27: 100722, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33659185

RESUMO

Congenital erythropoietic porphyria (CEP) is an autosomal recessive disorder of the heme biosynthetic pathway that is characterized by uroporphyrinogen III synthase (UROS) deficiency and the accumulation of non-physiological isomer I porphyrins. These phototoxic metabolites predominantly produced by the erythron result in ineffective erythropoiesis, chronic hemolysis and splenomegaly, but they also disseminate in tissues causing bullous photosensitivity to UV light and skin fragility that may progress to scarring with photo mutilation. Therapeutic management is currently limited to supportive care and bone marrow transplantation is reserved for the most severe cases. We describe here a 26-year-old women previously diagnosed with CEP harbouring two novel UROS gene mutations whose pathogenic mechanism was investigated by extensive molecular analysis. Clinical features included disabling hypertrichosis and skin photosensitivity without hemolysis. The first and rate-limiting 5-aminolevulinate synthase 2 (ALAS2) enzyme controls heme synthesis and porphyrin production in erythroid cells, while iron availability modulates its expression through a post-transcriptional mechanism. We performed iterative phlebotomies over 26 months to induce iron depletion in the patient and investigated the effectiveness and tolerance of this cost-effective approach. We observed a progressive decrease in plasma ferritin and urinary porphyrins upon treatment without inducing anemia. The patient reported improved quality of life and photosensitivity. Our data confirm recent reports highlighting the benefit of iron restriction on the disease phenotype through a reduction in porphyrin accumulation. This new strategy may represent an efficient and well-tolerated treatment for CEP patients with skin involvement and limited hematological component if iron restriction is carefully monitored.

15.
Stem Cell Reports ; 15(3): 677-693, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32795423

RESUMO

CRISPR/Cas9 is a promising technology for gene correction. However, the edition is often biallelic, and uncontrolled small insertions and deletions (indels) concomitant to precise correction are created. Mutation-specific guide RNAs were recently tested to correct dominant inherited diseases, sparing the wild-type allele. We tested an original approach to correct compound heterozygous recessive mutations. We compared editing efficiency and genotoxicity by biallelic guide RNA versus mutant allele-specific guide RNA in iPSCs derived from a congenital erythropoietic porphyria patient carrying compound heterozygous mutations resulting in UROS gene invalidation. We obtained UROS function rescue and metabolic correction with both guides with the potential of use for porphyria clinical intervention. However, unlike the biallelic one, the mutant allele-specific guide was free of on-target collateral damage. We recommend this design to avoid genotoxicity and to obtain on-target scarless gene correction for recessive disease with frequent cases of compound heterozygous mutations.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Mutação/genética , Porfirias/genética , Porfirias/terapia , RNA Guia de Cinetoplastídeos/metabolismo , Células-Tronco/metabolismo , Alelos , Sequência de Bases , Células Clonais , Éxons/genética , Terapia Genética , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariotipagem , Uroporfirinogênio III Sintetase/genética
17.
Stem Cell Res ; 38: 101467, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31151050

RESUMO

Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of the liver metabolism due to functional deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in overproduction of oxalate which complexes with calcium to form insoluble calcium-oxalate salts in urinary tracts, ultimately leading to end-stage renal disease. Currently, the only curative treatment for PH1 is combined liver-kidney transplantation, which is limited by donor organ shortage and lifelong requirement for immunosuppression. Transplantation of genetically modified autologous hepatocytes is an attractive therapeutic option for PH1. However, the use of fresh primary hepatocytes suffers from limitations such as organ availability, insufficient cell proliferation, loss of function, and the risk of immune rejection. We developed patient-specific induced pluripotent stem cells (PH1-iPSCs) free of reprogramming factors as a source of renewable and genetically defined autologous PH1-hepatocytes. We then investigated additive gene therapy using a lentiviral vector encoding wild-type AGT under the control of the liver-specific transthyretin promoter. Genetically modified PH1-iPSCs successfully provided hepatocyte-like cells (HLCs) that exhibited significant AGT expression at both RNA and protein levels after liver-specific differentiation process. These results pave the way for cell-based therapy of PH1 by transplantation of genetically modified autologous HLCs derived from patient-specific iPSCs.


Assuntos
Terapia Genética , Hepatócitos/metabolismo , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Transaminases , Reprogramação Celular , Hepatócitos/patologia , Hepatócitos/transplante , Humanos , Hiperoxalúria Primária/patologia , Hiperoxalúria Primária/terapia , Células-Tronco Pluripotentes Induzidas/patologia , Transaminases/biossíntese , Transaminases/genética
18.
Nat Commun ; 10(1): 1136, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850590

RESUMO

CRISPR-Cas9 is a promising technology for genome editing. Here we use Cas9 nuclease-induced double-strand break DNA (DSB) at the UROS locus to model and correct congenital erythropoietic porphyria. We demonstrate that homology-directed repair is rare compared with NHEJ pathway leading to on-target indels and causing unwanted dysfunctional protein. Moreover, we describe unexpected chromosomal truncations resulting from only one Cas9 nuclease-induced DSB in cell lines and primary cells by a p53-dependent mechanism. Altogether, these side effects may limit the promising perspectives of the CRISPR-Cas9 nuclease system for disease modeling and gene therapy. We show that the single nickase approach could be safer since it prevents on- and off-target indels and chromosomal truncations. These results demonstrate that the single nickase and not the nuclease approach is preferable, not only for modeling disease but also and more importantly for the safe management of future CRISPR-Cas9-mediated gene therapies.


Assuntos
Sistemas CRISPR-Cas , Cromossomos Humanos Par 10 , Quebras de DNA de Cadeia Dupla , Desoxirribonuclease I/genética , Edição de Genes/métodos , Terapia Genética/métodos , Uroporfirinogênio III Sintetase/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Deleção Cromossômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Genoma Humano , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , Modelos Biológicos , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Porfiria Eritropoética/terapia , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Uroporfirinogênio III Sintetase/metabolismo
19.
Sci Transl Med ; 10(459)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232228

RESUMO

Congenital erythropoietic porphyria is a rare autosomal recessive disease produced by deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway. The disease affects many organs, can be life-threatening, and currently lacks curative treatments. Inherited mutations most commonly reduce the enzyme's stability, altering its homeostasis and ultimately blunting intracellular heme production. This results in uroporphyrin by-product accumulation in the body, aggravating associated pathological symptoms such as skin photosensitivity and disfiguring phototoxic cutaneous lesions. We demonstrated that the synthetic marketed antifungal ciclopirox binds to the enzyme, stabilizing it. Ciclopirox targeted the enzyme at an allosteric site distant from the active center and did not affect the enzyme's catalytic role. The drug restored enzymatic activity in vitro and ex vivo and was able to alleviate most clinical symptoms of congenital erythropoietic porphyria in a genetic mouse model of the disease at subtoxic concentrations. Our findings establish a possible line of therapeutic intervention against congenital erythropoietic porphyria, which is potentially applicable to most of deleterious missense mutations causing this devastating disease.


Assuntos
Ciclopirox/uso terapêutico , Reposicionamento de Medicamentos , Porfiria Eritropoética/tratamento farmacológico , Sítio Alostérico , Animais , Fenômenos Biofísicos , Linhagem Celular , Ciclopirox/farmacocinética , Modelos Animais de Doenças , Homeostase , Camundongos , Fenótipo , Porfiria Eritropoética/enzimologia , Porfiria Eritropoética/patologia , Uroporfirinogênio III Sintetase/antagonistas & inibidores , Uroporfirinogênio III Sintetase/química , Uroporfirinogênio III Sintetase/metabolismo
20.
Ann Clin Biochem ; 54(3): 406-411, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27742850

RESUMO

We report the case of a 78-year-old patient with late diagnosis of hyperoxaluria type III (PH3). He developed renal failure after nephrectomy for clear cell papillary renal carcinoma and complained of recurrent urolithiasis for some 30 years, whose aetiology was never identified. Biochemical laboratory investigations of urine and urolithiasis composition revealed marked hyperoxaluria but normal concentrations of urinary glyceric and glycolic acid as well as stones of idiopathic calcium-oxalate appearance. Furthermore, the dietary survey showed excessive consumption of food supplements containing massive amounts of oxalate precursors. However, the persistence of excessive hyperoxaluria after his eating habits was changed leading us to perform molecular genetic testing. We found heterozygous mutations of the recently PH3-associated HOGA1 gene when sequencing PH genes. This is the first description of late diagnosis primary PH3 in a patient with several additional pro-lithogenic factors. This case illustrates the importance of undertaking a complete biological work-up to determine the aetiology of hyperoxaluria. This may reveal underdiagnosed primary hyperoxaluria, even in older patients.


Assuntos
Diagnóstico Tardio , Hiperoxalúria Primária/diagnóstico , Mutação , Oxo-Ácido-Liases/genética , Urolitíase/diagnóstico , Idoso , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Expressão Gênica , Ácidos Glicéricos/urina , Glicolatos/urina , Humanos , Hiperoxalúria Primária/complicações , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/urina , Rim/metabolismo , Rim/patologia , Rim/cirurgia , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Masculino , Nefrectomia , Oxo-Ácido-Liases/metabolismo , Urolitíase/complicações , Urolitíase/genética , Urolitíase/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA