Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482083

RESUMO

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Assuntos
Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Degeneração Neural/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Axônios/metabolismo , Proteína C9orf72/genética , Morte Celular , Células Cultivadas , Córtex Cerebral/patologia , Cromatina/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Drosophila , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Estabilidade Proteica , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
2.
Nature ; 599(7883): 102-107, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34616039

RESUMO

Astrocytes regulate the response of the central nervous system to disease and injury and have been hypothesized to actively kill neurons in neurodegenerative disease1-6. Here we report an approach to isolate one component of the long-sought astrocyte-derived toxic factor5,6. Notably, instead of a protein, saturated lipids contained in APOE and APOJ lipoparticles mediate astrocyte-induced toxicity. Eliminating the formation of long-chain saturated lipids by astrocyte-specific knockout of the saturated lipid synthesis enzyme ELOVL1 mitigates astrocyte-mediated toxicity in vitro as well as in a model of acute axonal injury in vivo. These results suggest a mechanism by which astrocytes kill cells in the central nervous system.


Assuntos
Astrócitos/química , Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Lipídeos/química , Lipídeos/toxicidade , Animais , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/toxicidade , Elongases de Ácidos Graxos/deficiência , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurotoxinas/química , Neurotoxinas/toxicidade
3.
Trends Genet ; 38(9): 904-919, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487823

RESUMO

Motor neurons are a remarkably powerful cell type in the central nervous system. They innervate and control the contraction of virtually every muscle in the body and their dysfunction underlies numerous neuromuscular diseases. Some motor neurons seem resistant to degeneration whereas others are vulnerable. The intrinsic heterogeneity of motor neurons in adult organisms has remained elusive. The development of high-throughput single-cell transcriptomics has changed the paradigm, empowering rapid isolation and profiling of motor neuron nuclei, revealing remarkable transcriptional diversity within the skeletal and autonomic nervous systems. Here, we discuss emerging technologies for defining motor neuron heterogeneity in the adult motor system as well as implications for disease and spinal cord injury. We establish a roadmap for future applications of emerging techniques - such as epigenetic profiling, spatial RNA sequencing, and single-cell somatic mutational profiling to adult motor neurons, which will revolutionize our understanding of the healthy and degenerating adult motor system.


Assuntos
Esclerose Lateral Amiotrófica , Adulto , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Humanos , Neurônios Motores/metabolismo , Medula Espinal , Transcriptoma/genética
4.
J Cardiovasc Electrophysiol ; 34(8): 1640-1647, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365926

RESUMO

BACKGROUND: Studies have identified significant sex-based differences and disparities in the clinical presentation and treatment of atrial fibrillation (AF). Studies have shown women are less likely to be referred for catheter ablation, are older at the time of ablation, and are more likely to have recurrence after ablation. However, in most studies investigating AF ablation outcomes, the female cohorts were relatively small. The impact of sex on the outcome and safety of ablation procedures is still unclear. OBJECTIVE: To investigate sex-based differences in outcomes and complications after AF catheter ablation, with a significant female cohort METHOD: In this retrospective study, patients undergoing AF ablation from January 1, 2014, to March 31, 2021, were included. We investigated clinical characteristics, duration and progression of AF, number of EP appointments from diagnosis to ablation, procedural data, and procedure complications. RESULTS: Total of 1346 patients underwent first catheter ablation for AF during this period, including 896 (66.5%) male and 450 (33.4%) female patients. Female patients were older at the time of ablation (66.2 vs. 62.4 years; p < .001). Women had higher CHA2 DS2 -VASc (congestive heart failure, hypertension, age, diabetes, stroke, vascular disease, sex category) scores (3 vs. 2; p < .001) than men, expectedly, as the female sex warrants an additional point. 25.3% female patients had PersAF at the time of diagnosis versus 35.3% male patients (p < .001). At the time of ablation, 31.8% female patients had PersAF as compared to 43.1% male patients (p < .001), indicating progression of PAF to PersAF in both sexes. Women tried more AADs than men before ablation (1.13 vs. 0.98; p = .002). Male and female patients had no statistically significant difference in (a) arrhythmia recurrence at 1-year post ablation (27.7% vs. 30%; p = .38) or (b) procedural complication rate (1.8% vs. 3.1%; p = .56). CONCLUSION: Female patients were older and had higher CHA2 DS2 -VASc scores compared to males at the time of AF ablation. Women tried more AADs than men before ablation. One-year arrhythmia recurrence rates and procedural complications were similar in both sexes. No sex-based differences were observed in safety and efficacy of ablation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Masculino , Feminino , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Fatores de Tempo , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Recidiva
5.
Neurosurg Focus ; 55(3): E7, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657107

RESUMO

OBJECTIVE: Diffusion basis spectrum imaging (DBSI) has shown promise in evaluating cervical spinal cord structural changes in patients with cervical spondylotic myelopathy (CSM). DBSI may also be valuable in the postoperative setting by serially tracking spinal cord microstructural changes following decompressive cervical spine surgery. Currently, there is a paucity of studies investigating this topic, likely because of challenges in resolving signal distortions from spinal instrumentation. Therefore, the objective of this study was to assess the feasibility of DBSI metrics extracted from the C3 spinal level to evaluate CSM patients postoperatively. METHODS: Fifty CSM patients and 20 healthy controls were enrolled in a single-center prospective study between 2018 and 2020. All patients and healthy controls underwent preoperative and postoperative diffusion-weighted MRI (dMRI) at a 2-year follow-up. All CSM patients underwent decompressive cervical surgery. The modified Japanese Orthopaedic Association (mJOA) score was used to categorize CSM patients as having mild, moderate, or severe myelopathy. DBSI metrics were extracted from the C3 spinal cord level to minimize image artifact and reduce partial volume effects. DBSI anisotropic tensors evaluated white matter tracts through fractional anisotropy, axial diffusivity, radial diffusivity, and fiber fraction. DBSI isotropic tensors assessed extra-axonal pathology through restricted and nonrestricted fractions. RESULTS: Of the 50 CSM patients, both baseline and postoperative dMR images with sufficient quality for analysis were obtained in 27 patients. These included 15 patients with mild CSM (mJOA scores 15-17), 7 with moderate CSM (scores 12-14), and 5 with severe CSM (scores 0-11), who were followed up for a mean of 23.5 (SD 4.1, range 11-31) months. All preoperative C3-level DBSI measures were significantly different between CSM patients and healthy controls (p < 0.05), except DBSI fractional anisotropy (p = 0.31). At the 2-year follow-up, the same significance pattern was found between CSM patients and healthy controls, except DBSI radial diffusivity was no longer statistically significant (p = 0.75). When assessing change (i.e., postoperative - preoperative values) in C3-level DBSI measures, CSM patients exhibited significant decreases in DBSI radial diffusivity (p = 0.02), suggesting improvement in myelin integrity (i.e., remyelination) at the 2-year follow-up. Among healthy controls, there was no significant difference in DBSI metrics over time. CONCLUSIONS: DBSI metrics derived from dMRI at the C3 spinal level can be used to provide meaningful insights into representations of the spinal cord microstructure of CSM patients at baseline and 2-year follow-up. DBSI may have the potential to characterize white matter tract recovery and inform outcomes following decompressive cervical surgery for CSM.


Assuntos
Doenças da Medula Espinal , Humanos , Estudos de Viabilidade , Estudos Prospectivos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia
6.
J Neurosci ; 38(43): 9126-9128, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355623
7.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37949840

RESUMO

In Drosophila, pairing of maternal and paternal homologous chromosomes can permit trans-interactions between enhancers on one homolog and promoters on another, an example of transvection. Although trans-interactions have been observed at many loci in the Drosophila genome and in other organisms, the parameters that govern enhancer action in trans remain poorly understood. Using a transgenic reporter system, we asked whether enhancers and promoters at nonallelic, but nearby, genomic positions can communication in trans. Using one transgenic insertion carrying the synthetic enhancer GMR and another nearby insertion carrying the hsp70 promoter driving a fluorescent reporter, we show that transgenes separated by 2.6 kb of linear distance can support enhancer action in trans at the 53F8 locus. Furthermore, transvection between the nonallelic insertions can be augmented by a small deletion flanking one insert, likely via changes to the paired configuration of the homologs. Subsequent analyses of other insertions in 53F8 that carry different transgenic sequences demonstrate that the capacity to support transvection between nonallelic sites varies greatly, suggesting that factors beyond the linear distance between insertion sites play an important role. Finally, analysis of transvection between nearby nonallelic sites at other genomic locations shows evidence of position effects, where one locus supported GMR action in trans over a linear distance of over 10 kb, whereas another locus showed no evidence of transvection over a span <200 bp. Overall, our data demonstrate that transvection between nonallelic sites represents a complex interplay between genomic context, interallelic distance, and promoter identity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Genômica , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos
8.
J Neurosurg ; : 1-15, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875724

RESUMO

OBJECTIVE: This study summarizes medical device reports (MDRs) associated with adverse events for vagus nerve stimulation (VNS) devices indicated for epilepsy as reported by the Manufacturer and User Facility Device Experience (MAUDE) database of the US Food and Drug Administration. METHODS: The MAUDE database was surveyed for MDRs from November 2013 to September 2022 regarding VNS devices for epilepsy. Event descriptions, device problems, correlated patient consequences, and device models were grouped and analyzed in Python. Based on event description, revision surgeries and other unique events were identified. Revenue from VNS device sales was used to approximate growth in their use over time. RESULTS: A total of 21,448 MDRs met the inclusion criteria. High VNS impedance, the most prevalent device malfunction overall (17.0% of MDRs), was the most common factor for 18 of the 102 encountered patient problems and led to 1001 revision surgeries (3371 total revisions). Included in those 18 device malfunctions were 3 of the top 6 occurring patient problems: seizure recurrence (9.9% associated with high impedance; encompassed focal, absence, and grand mal subtypes), death (1.3%), and generalized pain (7.9%). The next 4 top cited device malfunctions-lead fracture (13.7% of MDRs), operational issue (6.6%), battery problem holding charge (4.2%), and premature end-of-life indicator (2.9%)-differed widely in their percentage of cases that did not impact patients (77.4%, 57.3%, 48.9%, and 92.2%, respectively), highlighting differing malfunction severities. Seizure recurrence, the most prevalent patient impact, was the outcome most associated with 32 of the 68 encountered device problems, including high impedance (12.8%), lead fracture (12.2%), operational issue (18.4%), battery problem holding charge (31.2%), and premature end-of-life indicator (8.9%), which comprised the top 5 occurring device problems. In general, MDRs spanned a diverse range including device age, hardware, software, and surgeon or manufacturer error. Trends were seen over time with declining annual MDRs coupled with a rise in the use of VNS devices as gauged by revenue growth. Shifting device and patient problem profiles were also seen in successive models, reflecting engineering updates. CONCLUSIONS: This study characterizes the most common and consequential side effects of VNS devices for epilepsy while clarifying likely causes. In addition, the outcomes of 68 distinct device malfunctions were identified, including many not ubiquitously present in literature, lending critical perspective to clinical practice.

9.
Cell Rep ; 43(3): 113857, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421866

RESUMO

Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generate a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database. Single-cell RNA sequencing of 13,200 cells reveals that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. Extending C. elegans Neuronal Gene Expression Map and Network (CeNGEN) findings, all MN subclasses are delineated by distinct expression codes of either neuropeptide or transcription factor gene families. Strikingly, combinatorial codes of homeodomain transcription factor genes succinctly delineate adult MN diversity in both C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs and uncovers organizing principles and conserved molecular codes of adult MN diversity.


Assuntos
Proteínas de Caenorhabditis elegans , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neurônios Motores/metabolismo , Regulação da Expressão Gênica , Proteínas de Caenorhabditis elegans/metabolismo
10.
J Biol Chem ; 287(26): 22099-111, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22556417

RESUMO

Human P2X2 receptors (hP2X2) are strongly inhibited by zinc over the range of 2-100 µM, whereas rat P2X2 receptors (rP2X2) are strongly potentiated over the same range, and then inhibited by zinc over 100 µM. However, the biological role of zinc modulation is unknown in either species. To identify candidate regions controlling zinc inhibition in hP2X2 a homology model based on the crystal structure of zebrafish P2X4.1 was made. In this model, His-204 and His-209 of one subunit were near His-330 of the adjacent subunit. Cross-linking studies confirmed that these residues are within 8 Å of each other. Simultaneous mutation of these three histidines to alanines decreased the zinc potency of hP2X2 nearly 100-fold. In rP2X2, one of these histidines is replaced by a lysine, and in a background in which zinc potentiation was eliminated, mutation of Lys-197 to histidine converted rP2X2 from low potency to high potency inhibition. We explored whether the zinc-binding site lies within the vestibules running down the central axis of the receptor. Elimination of all negatively charged residues from the upper vestibule had no effect on zinc inhibition. In contrast, mutation of several residues in the hP2X2 middle vestibule resulted in dramatic changes in the potency of zinc inhibition. In particular, the zinc potency of P206C could be reversibly shifted from extremely high (∼10 nM) to very low (>100 µM) by binding and unbinding MTSET. These results suggest that the cluster of histidines at the subunit interface controls access of zinc to its binding site.


Assuntos
Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/metabolismo , Zinco/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Reagentes de Ligações Cruzadas/farmacologia , Eletrofisiologia/métodos , Histidina/química , Humanos , Canais Iônicos/química , Ligantes , Modelos Biológicos , Modelos Moleculares , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Ratos , Receptores Purinérgicos P2X2/genética
11.
Trends Cancer ; 9(10): 788-790, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37407364

RESUMO

Recently, ChatGPT has drawn attention to the potential uses of artificial intelligence (AI) in academia. Here, we discuss how ChatGPT can be of value to medicine and medical oncology and the potential pitfalls that may be encountered.


Assuntos
Inteligência Artificial , Oncologia , Humanos
12.
Spine J ; 23(4): 504-512, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36509379

RESUMO

BACKGROUND CONTEXT: A major shortcoming in improving care for cervical spondylotic myelopathy (CSM) patients is the lack of robust quantitative imaging tools to guide surgical decision-making. Diffusion basis spectrum imaging (DBSI), an advanced diffusion-weighted MRI technique, provides objective assessments of white matter tract integrity that may help prognosticate outcomes in patients undergoing surgery for CSM. PURPOSE: To examine the ability of DBSI to predict clinically important CSM outcome measures at 2-years follow-up. STUDY DESIGN/SETTING: Prospective cohort study. PATIENT SAMPLE: Patients undergoing decompressive cervical surgery for CSM. OUTCOME MEASURES: Neurofunctional status was assessed by the mJOA, MDI, and DASH. Quality-of-life was measured by the SF-36 PCS and SF-36 MCS. The NDI evaluated self-reported neck pain, and patient satisfaction was assessed by the NASS satisfaction index. METHODS: Fifty CSM patients who underwent cervical decompressive surgery were enrolled. Preoperative DBSI metrics assessed white matter tract integrity through fractional anisotropy, fiber fraction, axial diffusivity, and radial diffusivity. To evaluate extra-axonal diffusion, DBSI measures restricted and nonrestricted fractions. Patient-reported outcome measures were evaluated preoperatively and up to 2-years follow-up. Support vector machine classification algorithms were used to predict surgical outcomes at 2-years follow-up. Specifically, three feature sets were built for each of the seven clinical outcome measures (eg, mJOA), including clinical only, DBSI only, and combined feature sets. RESULTS: Twenty-seven mild (mJOA 15-17), 12 moderate (12-14) and 11 severe (0-11) CSM patients were enrolled. Twenty-four (60%) patients underwent anterior decompressive surgery compared with 16 (40%) posterior approaches. The mean (SD) follow-up was 23.2 (5.6, range 6.1-32.8) months. Feature sets built on combined data (ie, clinical+DBSI metrics) performed significantly better for all outcome measures compared with those only including clinical or DBSI data. When predicting improvement in the mJOA, the clinically driven feature set had an accuracy of 61.9 [61.6, 62.5], compared with 78.6 [78.4, 79.2] in the DBSI feature set, and 90.5 [90.2, 90.8] in the combined feature set. CONCLUSIONS: When combined with key clinical covariates, preoperative DBSI metrics predicted improvement after surgical decompression for CSM with high accuracy for multiple outcome measures. These results suggest that DBSI may serve as a noninvasive imaging biomarker for CSM valuable in guiding patient selection and informing preoperative counseling. LEVEL OF EVIDENCE: II.


Assuntos
Doenças da Medula Espinal , Espondilose , Humanos , Estudos Prospectivos , Espondilose/diagnóstico por imagem , Espondilose/cirurgia , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/cirurgia , Biomarcadores , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Resultado do Tratamento
13.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577463

RESUMO

Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generated a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database (http://celegans.spinalcordatlas.org). Single-cell RNA-sequencing of 13,200 cells revealed that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. All subclasses are delineated by unique expression codes of either neuropeptide or transcription factor gene families. Strikingly, we found that combinatorial codes of homeodomain transcription factor genes define adult MN diversity both in C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs, and uncovers organizing principles and conserved molecular codes of adult MN diversity.

14.
Neurosurgery ; 92(1): 102-109, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519861

RESUMO

BACKGROUND: Diffusion basis spectrum imaging (DBSI) is a noninvasive quantitative imaging modality that may improve understanding of cervical spondylotic myelopathy (CSM) pathology through detailed evaluations of spinal cord microstructural compartments. OBJECTIVE: To determine the utility of DBSI as a biomarker of CSM disease severity. METHODS: A single-center prospective cohort study enrolled 50 patients with CSM and 20 controls from 2018 to 2020. All patients underwent clinical evaluation and diffusion-weighted MRI, followed by diffusion tensor imaging and DBSI analyses. Diffusion-weighted MRI metrics assessed white matter integrity by fractional anisotropy, axial diffusivity, radial diffusivity, and fiber fraction. In addition, DBSI further evaluates extra-axonal changes by isotropic restricted and nonrestricted fraction. Including an intra-axonal diffusion compartment, DBSI improves estimations of axonal injury through intra-axonal axial diffusivity. Patients were categorized into mild, moderate, and severe CSM using modified Japanese Orthopedic Association classifications. Imaging parameters were compared among patient groups using independent samples t tests and ANOVA. RESULTS: Twenty controls, 27 mild (modified Japanese Orthopedic Association 15-17), 12 moderate (12-14), and 11 severe (0-11) patients with CSM were enrolled. Diffusion tensor imaging and DBSI fractional anisotropy, axial diffusivity, and radial diffusivity were significantly different between control and patients with CSM ( P < .05). DBSI fiber fraction, restricted fraction, and nonrestricted fraction were significantly different between groups ( P < .01). DBSI intra-axonal axial diffusivity was lower in mild compared with moderate (mean difference [95% CI]: 1.1 [0.3-2.1], P < .01) and severe (1.9 [1.3-2.4], P < .001) CSM. CONCLUSION: DBSI offers granular data on white matter tract integrity in CSM that provide novel insights into disease pathology, supporting its potential utility as a biomarker of CSM disease progression.


Assuntos
Doenças da Medula Espinal , Espondilose , Humanos , Imagem de Tensor de Difusão/métodos , Espondilose/diagnóstico por imagem , Estudos Prospectivos , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/patologia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Imagem de Difusão por Ressonância Magnética , Biomarcadores
15.
Neurooncol Adv ; 5(1): vdad050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215950

RESUMO

Background: Following chemoradiotherapy for high-grade glioma (HGG), it is often challenging to distinguish treatment changes from true tumor progression using conventional MRI. The diffusion basis spectrum imaging (DBSI) hindered fraction is associated with tissue edema or necrosis, which are common treatment-related changes. We hypothesized that DBSI hindered fraction may augment conventional imaging for earlier diagnosis of progression versus treatment effect. Methods: Adult patients were prospectively recruited if they had a known histologic diagnosis of HGG and completed standard-of-care chemoradiotherapy. DBSI and conventional MRI data were acquired longitudinally beginning 4 weeks post-radiation. Conventional MRI and DBSI metrics were compared with respect to their ability to diagnose progression versus treatment effect. Results: Twelve HGG patients were enrolled between August 2019 and February 2020, and 9 were ultimately analyzed (5 progression, 4 treatment effect). Within new or enlarging contrast-enhancing regions, DBSI hindered fraction was significantly higher in the treatment effect group compared to progression group (P = .0004). Compared to serial conventional MRI alone, inclusion of DBSI would have led to earlier diagnosis of either progression or treatment effect in 6 (66.7%) patients by a median of 7.7 (interquartile range = 0-20.1) weeks. Conclusions: In the first longitudinal prospective study of DBSI in adult HGG patients, we found that in new or enlarging contrast-enhancing regions following therapy, DBSI hindered fraction is elevated in cases of treatment effect compared to those with progression. Hindered fraction map may be a valuable adjunct to conventional MRI to distinguish tumor progression from treatment effect.

16.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945394

RESUMO

Positively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides. We trained a machine learning algorithm to detect such sequence features and unexpectedly discovered that this mode of toxicity is not limited to human repeat expansion disorders but has evolved countless times across the tree of life in the form of cationic antimicrobial and venom peptides. We demonstrate that an excess in positive charge is necessary and sufficient for this killer activity, which we name 'polycation poisoning'. These findings reveal an ancient and conserved mechanism and inform ways to leverage its design rules for new generations of bioactive peptides.

17.
J Neurosurg Spine ; : 1-11, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523255

RESUMO

OBJECTIVE: Cervical spondylotic myelopathy (CSM) is the most common cause of chronic spinal cord injury, a significant public health problem. Diffusion tensor imaging (DTI) is a neuroimaging technique widely used to assess CNS tissue pathology and is increasingly used in CSM. However, DTI lacks the needed accuracy, precision, and recall to image pathologies of spinal cord injury as the disease progresses. Thus, the authors used diffusion basis spectrum imaging (DBSI) to delineate white matter injury more accurately in the setting of spinal cord compression. It was hypothesized that the profiles of multiple DBSI metrics can serve as imaging outcome predictors to accurately predict a patient's response to therapy and his or her long-term prognosis. This hypothesis was tested by using DBSI metrics as input features in a support vector machine (SVM) algorithm. METHODS: Fifty patients with CSM and 20 healthy controls were recruited to receive diffusion-weighted MRI examinations. All spinal cord white matter was identified as the region of interest (ROI). DBSI and DTI metrics were extracted from all voxels in the ROI and the median value of each patient was used in analyses. An SVM with optimized hyperparameters was trained using clinical and imaging metrics separately and collectively to predict patient outcomes. Patient outcomes were determined by calculating changes between pre- and postoperative modified Japanese Orthopaedic Association (mJOA) scale scores. RESULTS: Accuracy, precision, recall, and F1 score were reported for each SVM iteration. The highest performance was observed when a combination of clinical and DBSI metrics was used to train an SVM. When assessing patient outcomes using mJOA scale scores, the SVM trained with clinical and DBSI metrics achieved accuracy and an area under the curve of 88.1% and 0.95, compared with 66.7% and 0.65, respectively, when clinical and DTI metrics were used together. CONCLUSIONS: The accuracy and efficacy of the SVM incorporating clinical and DBSI metrics show promise for clinical applications in predicting patient outcomes. These results suggest that DBSI metrics, along with the clinical presentation, could serve as a surrogate in prognosticating outcomes of patients with CSM.

18.
Nat Commun ; 13(1): 5427, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109497

RESUMO

Neurons born in the embryo can undergo a protracted period of maturation lasting well into postnatal life. How gene expression changes are regulated during maturation and whether they can be recapitulated in cultured neurons remains poorly understood. Here, we show that mouse motor neurons exhibit pervasive changes in gene expression and accessibility of associated regulatory regions from embryonic till juvenile age. While motifs of selector transcription factors, ISL1 and LHX3, are enriched in nascent regulatory regions, motifs of NFI factors, activity-dependent factors, and hormone receptors become more prominent in maturation-dependent enhancers. Notably, stem cell-derived motor neurons recapitulate ~40% of the maturation expression program in vitro, with neural activity playing only a modest role as a late-stage modulator. Thus, the genetic maturation program consists of a core hardwired subprogram that is correctly executed in vitro and an extrinsically-controlled subprogram that is dependent on the in vivo context of the maturing organism.


Assuntos
Neurônios Motores , Neurogênese , Animais , Hormônios/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Neurônios Motores/metabolismo , Neurogênese/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Nat Cell Biol ; 24(9): 1378-1393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36075972

RESUMO

While acetylated, RNA-binding-deficient TDP-43 reversibly phase separates within nuclei into complex droplets (anisosomes) comprised of TDP-43-containing liquid outer shells and liquid centres of HSP70-family chaperones, cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we show that transient oxidative stress, proteasome inhibition or inhibition of the ATP-dependent chaperone activity of HSP70 provokes reversible cytoplasmic TDP-43 de-mixing and transition from liquid to gel/solid, independently of RNA binding or stress granules. Isotope labelling mass spectrometry was used to identify that phase-separated cytoplasmic TDP-43 is bound by the small heat-shock protein HSPB1. Binding is direct, mediated through TDP-43's RNA binding and low-complexity domains. HSPB1 partitions into TDP-43 droplets, inhibits TDP-43 assembly into fibrils, and is essential for disassembly of stress-induced TDP-43 droplets. A decrease in HSPB1 promotes cytoplasmic TDP-43 de-mixing and mislocalization. HSPB1 depletion was identified in spinal motor neurons of patients with ALS containing aggregated TDP-43. These findings identify HSPB1 to be a regulator of cytoplasmic TDP-43 phase separation and aggregation.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico , Transição de Fase , Trifosfato de Adenosina , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Complexo de Endopeptidases do Proteassoma , RNA/metabolismo
20.
Cell Rep ; 41(4): 111508, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288714

RESUMO

Mutations in the ataxin-2 gene (ATXN2) cause the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). A therapeutic strategy using antisense oligonucleotides targeting ATXN2 has entered clinical trial in humans. Additional ways to decrease ataxin-2 levels could lead to cheaper or less invasive therapies and elucidate how ataxin-2 is normally regulated. Here, we perform a genome-wide fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in human cells and identify genes encoding components of the lysosomal vacuolar ATPase (v-ATPase) as modifiers of endogenous ataxin-2 protein levels. Multiple FDA-approved small molecule v-ATPase inhibitors lower ataxin-2 protein levels in mouse and human neurons, and oral administration of at least one of these drugs-etidronate-is sufficient to decrease ataxin-2 in the brains of mice. Together, we propose v-ATPase as a drug target for ALS and SCA2 and demonstrate the value of FACS-based screens in identifying genetic-and potentially druggable-modifiers of human disease proteins.


Assuntos
Esclerose Lateral Amiotrófica , Ataxias Espinocerebelares , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Camundongos , Ataxina-2/genética , Ataxina-2/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Preparações Farmacêuticas , Ácido Etidrônico , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Oligonucleotídeos Antissenso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA