Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979280

RESUMO

Aging is associated with a decline in the number and fitness of adult stem cells 1-4 . Aging-associated loss of stemness is posited to suppress tumorigenesis 5,6 , but this hypothesis has not been tested in vivo . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells 7,8 , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin. This phenotype is underpinned by aging-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, leading to a functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescue stemness and promote tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1- lipocalin-2 axis is detrimental to young alveolar cells via induction of ferroptosis. We find that aging-associated DNA hypomethylation at specific enhancer sites associates with elevated NUPR1 expression, which is recapitulated in young alveolar cells by inhibition of DNA methylation. We uncover that aging drives a functional iron insufficiency, which leads to loss of stemness and tumorigenesis, but promotes resistance to ferroptosis. These findings have significant implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate in young individuals, revealing a critical window for such cancer prevention efforts.

2.
Cancer Res ; 82(19): 3549-3560, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35952360

RESUMO

Intratumoral heterogeneity and cellular plasticity have emerged as hallmarks of cancer, including pancreatic ductal adenocarcinoma (PDAC). As PDAC portends a dire prognosis, a better understanding of the mechanisms underpinning cellular diversity in PDAC is crucial. Here, we investigated the cellular heterogeneity of PDAC cancer cells across a range of in vitro and in vivo growth conditions using single-cell genomics. Heterogeneity contracted significantly in two-dimensional and three-dimensional cell culture models but was restored upon orthotopic transplantation. Orthotopic transplants reproducibly acquired cell states identified in autochthonous PDAC tumors, including a basal state exhibiting coexpression and coaccessibility of epithelial and mesenchymal genes. Lineage tracing combined with single-cell transcriptomics revealed that basal cells display high plasticity in situ. This work defines the impact of cellular growth conditions on phenotypic diversity and uncovers a highly plastic cell state with the capacity to facilitate state transitions and promote intratumoral heterogeneity in PDAC. SIGNIFICANCE: This work provides important insights into how different model systems of pancreatic ductal adenocarcinoma mold the phenotypic space of cancer cells, highlighting the power of in vivo models.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Humanos , Ductos Pancreáticos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Plásticos , Neoplasias Pancreáticas
3.
MethodsX ; 7: 101100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134098

RESUMO

Primary human vulvovaginal fibroblast cell lines are useful for studying biological mechanisms underlying genital pain, pelvic organ prolapse, and the spread of sexually transmitted infections. However, the vaginal biopsies necessary for establishing these cell lines are invasive and relatively difficult to obtain. Primary mouse fibroblast cell lines derived from pre-clinical animal models of these conditions can be used for better controlled experiments that can help us dissect disease mechanisms. To our knowledge, there are no published protocols for establishing primary murine vaginal fibroblast cell lines to date. Here, we describe a protocol for the establishment of murine vaginal fibroblast cell lines via enzymatic digestion of vaginal canal tissue. Cell lines generated using this method can be used for in vitro studies of these important structural cells in a variety of pre-clinical mouse models; such studies are required to identify and characterize relevant regulatory and therapeutic targets in a wide array of diseases of interest. As shown in our representative data, this protocol yields viable cell lines from ND4 Swiss outbred mice. These cells bear surface markers characteristic of fibroblasts and are capable of producing inflammatory cytokines in response to treatment with bacterial and yeast antigens in vitro.

5.
J Biol Chem ; 280(29): 27393-401, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15897196

RESUMO

Prothrombin is activated to thrombin by two sequential factor Xa-catalyzed cleavages, at Arg271 followed by cleavage at Arg320. Factor Va, along with phospholipid and Ca2+, enhances the rate of the process by 300,000-fold, reverses the order of cleavages, and directs the process through the meizothrombin pathway, characterized by initial cleavage at Arg320. Previous work indicated reduced rates of prothrombin activation with recombinant mutant factor Va defective in factor Xa binding (E323F/Y324F and E330M/V331I, designated factor VaFF/MI). The present studies were undertaken to determine whether loss of activity can be attributed to selective loss of efficiency at one or both of the two prothrombin-activating cleavage sites. Kinetic constants for the overall activation of prothrombin by prothrombinase assembled with saturating concentrations of recombinant mutant factor Va were calculated, prothrombin activation was assessed by SDS-PAGE, and rate constants for both cleavages were analyzed from the time course of the concentration of meizothrombin. Prothrombinase assembled with factor VaFF/MI had decreased k(cat) for prothrombin activation with Km remaining unaffected. Prothrombinase assembled with saturating concentrations of factor VaFF/MI showed significantly lower rate for cleavage of plasma-derived prothrombin at Arg320 than prothrombinase assembled with saturating concentrations of wild type factor Va. These results were corroborated by analysis of cleavage of recombinant prothrombin mutants rMz-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A), which can be cleaved only at Arg320 or Arg271, respectively. Time courses of these mutants indicated that mutations in the factor Xa binding site of factor Va reduce rates for both bonds. These data indicate that the interaction of factor Xa with the heavy chain of factor Va strongly influences the catalytic activity of the enzyme resulting in increased rates for both prothrombin-activating cleavages.


Assuntos
Fator Va/metabolismo , Fator Xa/metabolismo , Protrombina/metabolismo , Tromboplastina/metabolismo , Sítios de Ligação/genética , Catálise , Fator Va/genética , Humanos , Cinética , Mutação de Sentido Incorreto , Tromboplastina/biossíntese , Tromboplastina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA