Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Psychiatry Res Neuroimaging ; 333: 111655, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201216

RESUMO

Clinicians often face a dilemma in diagnosing bipolar disorder patients with complex symptoms who spend more time in a depressive state than a manic state. The current gold standard for such diagnosis, the Diagnostic and Statistical Manual (DSM), is not objectively grounded in pathophysiology. In such complex cases, relying solely on the DSM may result in misdiagnosis as major depressive disorder (MDD). A biologically-based classification algorithm that can accurately predict treatment response may help patients suffering from mood disorders. Here we used an algorithm to do so using neuroimaging data. We used the neuromark framework to learn a kernel function for support vector machine (SVM) on multiple feature subspaces. The neuromark framework achieves up to 95.45% accuracy, 0.90 sensitivity, and 0.92 specificity in predicting antidepressant (AD) vs. mood stabilizer (MS) response in patients. We incorporated two additional datasets to evaluate the generalizability of our approach. The trained algorithm achieved up to 89% accuracy, 0.88 sensitivity, and 0.89 specificity in predicting the DSM-based diagnosis on these datasets. We also translated the model to distinguish responders to treatment from nonresponders with up to 70% accuracy. This approach reveals multiple salient biomarkers of medication-class of response within mood disorders.


Assuntos
Antipsicóticos , Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtornos do Humor/diagnóstico por imagem , Transtornos do Humor/tratamento farmacológico , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/tratamento farmacológico , Antipsicóticos/uso terapêutico , Neuroimagem
2.
Concurr Comput ; 35(18)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37744210

RESUMO

BrainForge is a cloud-enabled, web-based analysis platform for neuroimaging research. This website allows users to archive data from a study and effortlessly process data on a high-performance computing cluster. After analyses are completed, results can be quickly shared with colleagues. BrainForge solves multiple problems for researchers who want to analyze neuroimaging data, including issues related to software, reproducibility, computational resources, and data sharing. BrainForge can currently process structural, functional, diffusion, and arterial spin labeling MRI modalities, including preprocessing and group level analyses. Additional pipelines are currently being added, and the pipelines can accept the BIDS format. Analyses are conducted completely inside of Singularity containers and utilize popular software packages including Nipype, Statistical Parametric Mapping, the Group ICA of fMRI Toolbox, and FreeSurfer. BrainForge also features several interfaces for group analysis, including a fully automated adaptive ICA approach.

3.
Neurobiol Stress ; 14: 100326, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33869679

RESUMO

COVID-19, the infectious disease caused by the most recently discovered severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a global pandemic. It dramatically affects people's health and daily life. Neurological complications are increasingly documented for patients with COVID-19. However, the effect of COVID-19 on the brain is less studied, and existing quantitative neuroimaging analyses of COVID-19 were mainly based on the univariate voxel-based morphometry analysis (VBM) that requires corrections for a large number of tests for statistical significance, multivariate approaches that can reduce the number of tests to be corrected have not been applied to study COVID-19 effect on the brain yet. In this study, we leveraged source-based morphometry (SBM) analysis, a multivariate extension of VBM, to identify changes derived from computed tomography scans in covarying gray matter volume patterns underlying COVID-19 in 120 neurological patients (including 58 cases with COVID-19 and 62 patients without COVID-19 matched for age, gender and diseases). SBM identified that lower gray matter volume (GMV) in superior/medial/middle frontal gyri was significantly associated with a higher level of disability (modified Rankin Scale) at both discharge and six months follow-up phases even when controlling for cerebrovascular diseases. GMV in superior/medial/middle frontal gyri was also significantly reduced in patients receiving oxygen therapy compared to patients not receiving oxygen therapy. Patients with fever presented significant GMV reduction in inferior/middle temporal gyri and fusiform gyrus compared to patients without fever. Patients with agitation showed GMV reduction in superior/medial/middle frontal gyri compared to patients without agitation. Patients with COVID-19 showed no significant GMV differences from patients without COVID-19 in any brain region. Results suggest that COVID-19 may affect the frontal-temporal network in a secondary manner through fever or lack of oxygen.

4.
Neuroimage ; 53(3): 992-1000, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026221

RESUMO

Abnormalities of the medial temporal lobe have been consistently demonstrated in schizophrenia. A common functional polymorphism, Val108/158Met, in the putative schizophrenia susceptibility gene, catechol-O-methyltransferase (COMT), has been shown to influence medial temporal lobe function. However, the effects of this polymorphism on volumes of medial temporal lobe structures, particularly in patients with schizophrenia, are less clear. Here we measured the effects of COMT Val108/158Met genotype on the volume of two regions within the medial temporal lobe, the amygdala and hippocampus, in patients with schizophrenia and healthy control subjects. We obtained MRI and genotype data for 98 schizophrenic patients and 114 matched controls. An automated atlas-based segmentation algorithm was used to generate volumetric measures of the amygdala and hippocampus. Regression analyses included COMT met allele load as an additive effect, and also controlled for age, intracranial volume, gender and acquisition site. Across patients and controls, each copy of the COMT met allele was associated on average with a 2.6% increase in right amygdala volume, a 3.8% increase in left amygdala volume and a 2.2% increase in right hippocampus volume. There were no effects of COMT genotype on volumes of the whole brain and prefrontal regions. Thus, the COMT Val108/158Met polymorphism was shown to influence medial temporal lobe volumes in a linear-additive manner, mirroring its effect on dopamine catabolism. Taken together with previous work, our data support a model in which lower COMT activity, and a resulting elevation in extracellular dopamine levels, stimulates growth of medial temporal lobe structures.


Assuntos
Mapeamento Encefálico , Catecol O-Metiltransferase/genética , Predisposição Genética para Doença , Esquizofrenia/genética , Esquizofrenia/patologia , Lobo Temporal/patologia , Algoritmos , Genótipo , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Polimorfismo de Nucleotídeo Único
5.
Neuroimage ; 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-21134492

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

6.
Neuroimage ; 49(3): 2626-37, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19733247

RESUMO

When both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) data are collected they are typically analyzed separately and the joint information is not examined. Techniques that examine joint information can help to find hidden traits in complex disorders such as schizophrenia. The brain is vastly interconnected, and local brain morphology may influence functional activity at distant regions. In this paper we introduce three methods to identify inter-correlations among sMRI and fMRI voxels within the whole brain. We apply these methods to examine sMRI gray matter data and fMRI data derived from an auditory sensorimotor task from a large study of schizophrenia. In Method 1 the sMRI-fMRI cross-correlation matrix is reduced to a histogram and results show that healthy controls (HC) have stronger correlations than do patients with schizophrenia (SZ). In Method 2 the spatial information of sMRI-fMRI correlations is retained. Structural regions in the cerebellum and frontal regions show more positive and more negative correlations, respectively, with functional regions in HC than in SZ. In Method 3 significant sMRI-fMRI inter-regional links are detected, with regions in the cerebellum showing more significant positive correlations with functional regions in HC relative to SZ. Results from all three methods indicate that the linkage between gray matter and functional activation is stronger in HC than SZ. The methods introduced can be easily extended to comprehensively correlate large data sets.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/fisiopatologia , Adulto , Feminino , Humanos , Masculino
7.
Hum Brain Mapp ; 30(11): 3795-811, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19434601

RESUMO

Deficits in working memory (WM) are a consistent neurocognitive marker for schizophrenia. Previous studies have suggested that WM is the product of coordinated activity in distributed functionally connected brain regions. Independent component analysis (ICA) is a data-driven approach that can identify temporally coherent networks that underlie fMRI activity. We applied ICA to an fMRI dataset for 115 patients with chronic schizophrenia and 130 healthy controls by performing the Sternberg Item Recognition Paradigm. Here, we describe the first results using ICA to identify differences in the function of WM networks in schizophrenia compared to controls. ICA revealed six networks that showed significant differences between patients with schizophrenia and healthy controls. Four of these networks were negatively task-correlated and showed deactivation across the posterior cingulate, precuneus, medial prefrontal cortex, anterior cingulate, inferior parietal lobules, and parahippocampus. These networks comprise brain regions known as the default-mode network (DMN), a well-characterized set of regions shown to be active during internal modes of cognition and implicated in schizophrenia. Two networks were positively task-correlated, with one network engaging WM regions such as bilateral DLPFC and inferior parietal lobules while the other network engaged primarily the cerebellum. Our results suggest that DLPFC dysfunction in schizophrenia might be lateralized to the left and intrinsically tied to other regions such as the inferior parietal lobule and cingulate gyrus. Furthermore, we found that DMN dysfunction in schizophrenia exists across multiple subnetworks of the DMN and that these subnetworks are individually relevant to the pathophysiology of schizophrenia. In summary, this large multisite study identified multiple temporally coherent networks, which are aberrant in schizophrenia versus healthy controls and suggests that both task-correlated and task-anticorrelated networks may serve as potential biomarkers.


Assuntos
Encéfalo/fisiopatologia , Transtornos da Memória/etiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/complicações , Estimulação Acústica/métodos , Adulto , Análise de Variância , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Análise Discriminante , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/irrigação sanguínea , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Oxigênio/sangue , Córtex Pré-Frontal/irrigação sanguínea , Análise de Componente Principal , Escalas de Graduação Psiquiátrica , Tempo de Reação/fisiologia , Adulto Jovem
8.
Schizophr Bull ; 35(1): 82-95, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18997157

RESUMO

Regional gray matter (GM) abnormalities are well known to exist in patients with chronic schizophrenia. Voxel-based morphometry (VBM) has been previously used on structural magnetic resonance images (MRI) data to characterize these abnormalities. Two multisite schizophrenia studies, the Functional Biomedical Informatics Research Network and the Mind Clinical Imaging Consortium, which include 9 data collection sites, are evaluating the efficacy of pooling structural imaging data across imaging centers. Such a pooling of data could yield the increased statistical power needed to elucidate effects that may not be seen with smaller samples. VBM analyses were performed to evaluate the consistency of patient versus control gray matter concentration (GMC) differences across the study sites, as well as the effects of combining multisite data. Integration of data from both studies yielded a large sample of 503 subjects, including 266 controls and 237 patients diagnosed with schizophrenia, schizoaffective or schizophreniform disorder. The data were analyzed using the combined sample, as well as analyzing each of the 2 multisite studies separately. A consistent pattern of reduced relative GMC in schizophrenia patients compared with controls was found across all study sites. Imaging center-specific effects were evaluated using a region of interest analysis. Overall, the findings support the use of VBM in combined multisite studies. This analysis of schizophrenics and controls from around the United States provides continued supporting evidence for GM deficits in the temporal lobes, anterior cingulate, and frontal regions in patients with schizophrenia spectrum disorders.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Adulto , Feminino , Lobo Frontal/fisiopatologia , Giro do Cíngulo/fisiopatologia , Humanos , Masculino , Córtex Pré-Frontal/fisiopatologia , Lobo Temporal/fisiopatologia
9.
Brain Sci ; 8(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932126

RESUMO

This study assessed how BDNF (brain-derived neurotrophic factor) and other genes involved in its signaling influence brain structure and clinical functioning in pre-diagnosis Huntington's disease (HD). Parallel independent component analysis (pICA), a multivariate method for identifying correlated patterns in multimodal datasets, was applied to gray matter concentration (GMC) and genomic data from a sizeable PREDICT-HD prodromal cohort (N = 715). pICA identified a genetic component highlighting NTRK2, which encodes BDNF's TrkB receptor, that correlated with a GMC component including supplementary motor, precentral/premotor cortex, and other frontal areas (p < 0.001); this association appeared to be driven by participants with high or low levels of the genetic profile. The frontal GMC profile correlated with cognitive and motor variables (Trail Making Test A (p = 0.03); Stroop Color (p = 0.017); Stroop Interference (p = 0.04); Symbol Digit Modalities Test (p = 0.031); Total Motor Score (p = 0.01)). A top-weighted NTRK2 variant (rs2277193) was protectively associated with Trail Making Test B (p = 0.007); greater minor allele numbers were linked to a better performance. These results support the idea of a protective role of NTRK2 in prodromal HD, particularly in individuals with certain genotypes, and suggest that this gene may influence the preservation of frontal gray matter that is important for clinical functioning.

10.
Front Neurol ; 9: 190, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651271

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an expansion mutation of the cytosine-adenine-guanine (CAG) trinucleotide in the HTT gene. Decline in cognitive and motor functioning during the prodromal phase has been reported, and understanding genetic influences on prodromal disease progression beyond CAG will benefit intervention therapies. From a prodromal HD cohort (N = 715), we extracted gray matter (GM) components through independent component analysis and tested them for associations with cognitive and motor functioning that cannot be accounted for by CAG-induced disease burden (cumulative effects of CAG expansion and age). Furthermore, we examined genetic associations (at the genomic, HD pathway, and candidate region levels) with the GM components that were related to functional decline. After accounting for disease burden, GM in a component containing cuneus, lingual, and middle occipital regions was positively associated with attention and working memory performance, and the effect size was about a tenth of that of disease burden. Prodromal participants with at least one dystonia sign also had significantly lower GM volume in a bilateral inferior parietal component than participants without dystonia, after controlling for the disease burden. Two single-nucleotide polymorphisms (SNPs: rs71358386 in NCOR1 and rs71358386 in ADORA2B) in the HD pathway were significantly associated with GM volume in the cuneus component, with minor alleles being linked to reduced GM volume. Additionally, homozygous minor allele carriers of SNPs in a candidate region of ch15q13.3 had significantly higher GM volume in the inferior parietal component, and one minor allele copy was associated with a total motor score decrease of 0.14 U. Our findings depict an early genetical GM reduction in prodromal HD that occurs irrespective of disease burden and affects regions important for cognitive and motor functioning.

11.
Artigo em Inglês | MEDLINE | ID: mdl-28211597

RESUMO

We discuss the strategies employed in data quality control and quality assurance for the cognitive core of Neurobiological Predictors of Huntington's Disease (PREDICT-HD), a long-term observational study of over 1,000 participants with prodromal Huntington disease. In particular, we provide details regarding the training and continual evaluation of cognitive examiners, methods for error corrections, and strategies to minimize errors in the data. We present five important lessons learned to help other researchers avoid certain assumptions that could potentially lead to inaccuracies in their cognitive data.


Assuntos
Pesquisa Biomédica/normas , Disfunção Cognitiva/diagnóstico , Confiabilidade dos Dados , Doença de Huntington/diagnóstico , Testes Neuropsicológicos/normas , Sintomas Prodrômicos , Controle de Qualidade , Disfunção Cognitiva/etiologia , Humanos , Doença de Huntington/complicações , Estudos Longitudinais , Prognóstico
12.
Front Neurol ; 7: 147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708610

RESUMO

Huntington disease (HD) is caused by an abnormally expanded cytosine-adenine-guanine (CAG) trinucleotide repeat in the HTT gene. Age and CAG-expansion number are related to age at diagnosis and can be used to index disease progression. However, observed onset-age variability suggests that other factors also modulate progression. Indexing prodromal (pre-diagnosis) progression may highlight therapeutic targets by isolating the earliest-affected factors. We present the largest prodromal HD application of the univariate method voxel-based morphometry (VBM) and the first application of the multivariate method source-based morphometry (SBM) to, respectively, compare gray matter concentration (GMC) and capture co-occurring GMC patterns in control and prodromal participants. Using structural MRI data from 1050 (831 prodromal, 219 control) participants, we characterize control-prodromal, whole-brain GMC differences at various prodromal stages. Our results provide evidence for (1) regional co-occurrence and differential patterns of decline across the prodrome, with parietal and occipital differences commonly co-occurring, and frontal and temporal differences being relatively independent from one another, (2) fronto-striatal circuits being among the earliest and most consistently affected in the prodrome, (3) delayed degradation in some movement-related regions, with increasing subcortical and occipital differences with later progression, (4) an overall superior-to-inferior gradient of GMC reduction in frontal, parietal, and temporal lobes, and (5) the appropriateness of SBM for studying the prodromal HD population and its enhanced sensitivity to early prodromal and regionally concurrent differences.

13.
Lancet Neurol ; 13(12): 1193-201, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25453459

RESUMO

BACKGROUND: Although the association between cytosine-adenine-guanine (CAG) repeat length and age at onset of Huntington's disease is well known, improved prediction of onset would be advantageous for clinical trial design and prognostic counselling. We compared various measures for tracking progression and predicting conversion to manifest Huntington's disease. METHODS: In this prospective observational study, we assessed the ability of 40 measures in five domains (motor, cognitive, psychiatric, functional, and imaging) to predict time to motor diagnosis of Huntington's disease, accounting for CAG repeat length, age, and the interaction of CAG repeat length and age. Eligible participants were individuals from the PREDICT-HD study (from 33 centres in six countries [USA, Canada, Germany, Australia, Spain, UK]) with the gene mutation for Huntington's disease but without a motor diagnosis (a rating below 4 on the diagnostic confidence level from the 15-item motor assessment of the Unified Huntington's Disease Rating Scale). Participants were followed up between September, 2002, and July, 2014. We used joint modelling of longitudinal and survival data to examine the extent to which baseline and change of measures analysed separately was predictive of CAG-adjusted age at motor diagnosis. FINDINGS: 1078 individuals with a CAG expansion were included in this analysis. Participants were followed up for a mean of 5·1 years (SD 3·3, range 0·0-12·0). 225 (21%) of these participants received a motor diagnosis of Huntington's disease during the study. 37 of 40 cross-sectional and longitudinal clinical and imaging measures were significant predictors of motor diagnosis beyond CAG repeat length and age. The strongest predictors were in the motor, imaging, and cognitive domains: an increase of one SD in total motor score (motor domain) increased the risk of a motor diagnosis by 3·07 times (95% CI 2·26-4·16), a reduction of one SD in putamen volume (imaging domain) increased risk by 3·32 times (2·37-4·65), and a reduction of one SD in Stroop word score (cognitive domain) increased risk by 2·32 times (1·88-2·87). INTERPRETATION: Prediction of diagnosis of Huntington's disease can be improved beyond that obtained by CAG repeat length and age alone. Such knowledge about potential predictors of manifest Huntington's disease should inform discussions about guidelines for diagnosis, prognosis, and counselling, and might be useful in guiding the selection of participants and outcome measures for clinical trials. FUNDING: US National Institutes of Health, US National Institute of Neurological Disorders and Stroke, and CHDI Foundation.


Assuntos
Diagnóstico por Imagem/tendências , Doença de Huntington/diagnóstico , Doença de Huntington/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Doença de Huntington/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos
14.
Front Aging Neurosci ; 6: 78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795630

RESUMO

There is growing consensus that intervention and treatment of Huntington disease (HD) should occur at the earliest stage possible. Various early-intervention methods for this fatal neurodegenerative disease have been identified, but preventive clinical trials for HD are limited by a lack of knowledge of the natural history of the disease and a dearth of appropriate outcome measures. Objectives of the current study are to document the natural history of premanifest HD progression in the largest cohort ever studied and to develop a battery of imaging and clinical markers of premanifest HD progression that can be used as outcome measures in preventive clinical trials. Neurobiological predictors of Huntington's disease is a 32-site, international, observational study of premanifest HD, with annual examination of 1013 participants with premanifest HD and 301 gene-expansion negative controls between 2001 and 2012. Findings document 39 variables representing imaging, motor, cognitive, functional, and psychiatric domains, showing different rates of decline between premanifest HD and controls. Required sample size and models of premanifest HD are presented to inform future design of clinical and preclinical research. Preventive clinical trials in premanifest HD with participants who have a medium or high probability of motor onset are calculated to be as resource-effective as those conducted in diagnosed HD and could interrupt disease 7-12 years earlier. Methods and measures for preventive clinical trials in premanifest HD more than a dozen years from motor onset are also feasible. These findings represent the most thorough documentation of a clinical battery for experimental therapeutics in stages of premanifest HD, the time period for which effective intervention may provide the most positive possible outcome for patients and their families affected by this devastating disease.

15.
Med Student Res J ; 2: 21-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26913217

RESUMO

INTRODUCTION: The use of a medical data registry allows institutions to effectively manage information for many different investigations related to the registry, as well as evaluate patient's trends over time, with the ultimate goal of recognizing trends that may improve outcomes in a particular patient population. METHODS: The purpose of this article is to illustrate our experience with a stroke patient registry at a comprehensive stroke center and highlight advantages, disadvantages, and lessons learned in the process of designing, implementing, and maintaining a stroke registry. We detail the process of stroke registry methodology, common data element (CDE) definitions, the generation of manuscripts from a registry, and the limitations. ADVANTAGES: The largest advantage of a registry is the ability to prospectively add patients, while allowing investigators to go back and collect information retrospectively if needed. The continuous addition of new patients increases the sample size of studies from year to year, and it also allows reflection on clinical practices from previous years and the ability to investigate trends in patient management over time. LIMITATIONS: The greatest limitation in this registry pertains to our single-entry technique where multiple sites of data entry and transfer may generate errors within the registry. LESSONS LEARNED: To reduce the potential for errors and maximize the accuracy and efficiency of the registry, we invest significant time in training competent registry users and project leaders. With effective training and transition of leadership positions, which are continuous and evolving processes, we have attempted to optimize our clinical research registry for knowledge gain and quality improvement at our center.

16.
Front Neuroinform ; 5: 31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22207845

RESUMO

Electronic data capture of case report forms, demographic, neuropsychiatric, or clinical assessments, can vary from scanning hand-written forms into databases to fully electronic systems. Web-based forms can be extremely useful for self-assessment; however, in the case of neuropsychiatric assessments, self-assessment is often not an option. The clinician often must be the person either summarizing or making their best judgment about the subject's response in order to complete an assessment, and having the clinician turn away to type into a web browser may be disruptive to the flow of the interview. The Mind Research Network has developed a prototype for a software tool for the real-time acquisition and validation of clinical assessments in remote environments. We have developed the clinical assessment and remote administration tablet on a Microsoft Windows PC tablet system, which has been adapted to interact with various data models already in use in several large-scale databases of neuroimaging studies in clinical populations. The tablet has been used successfully to collect and administer clinical assessments in several large-scale studies, so that the correct clinical measures are integrated with the correct imaging and other data. It has proven to be incredibly valuable in confirming that data collection across multiple research groups is performed similarly, quickly, and with accountability for incomplete datasets. We present the overall architecture and an evaluation of its use.

17.
Cerebrovasc Dis Extra ; 1(1): 84-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22566986

RESUMO

BACKGROUND: Stroke registries contribute to the conduct of clinical research and to the assessment of health care quality control. Efforts to compare clinical outcomes and quality indicators between centers are dependent on standardized data elements, but it is unknown how stroke physicians define common data elements, such as hypertension or diabetes, when collecting data for registries at their centers. METHODS: We conducted an internet-based survey of 91 centers affiliated with a university to assess their definitions of common data elements (CDEs) and compared their responses with standardized definitions, including those from the American College of Cardiology (ACC). RESULTS: More than half (52%) of centers completed the survey. There was only modest agreement among respondents regarding definitions of CDEs in the survey and even less agreement on how the respondents' definitions compared to ACC standards. CONCLUSIONS: Surveyed respondents do not agree on the definitions of CDEs, making comparisons between centers problematic. Standardized definitions of CDEs are needed to improve data collection for patient care and clinical research.

18.
Neuroinformatics ; 9(4): 321-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21246418

RESUMO

Making an accurate diagnosis of schizophrenia and related psychoses early in the course of the disease is important for initiating treatment and counseling patients and families. In this study, we developed classification models for early disease diagnosis using structural MRI (sMRI) and neuropsychological (NP) testing. We used sMRI measurements and NP test results from 28 patients with recent-onset schizophrenia and 47 healthy subjects, drawn from the larger sample of the Mind Clinical Imaging Consortium. We developed diagnostic models based on Linear Discriminant Analysis (LDA) following two approaches; namely, (a) stepwise (STP) LDA on the original measurements, and (b) LDA on variables created through Principal Component Analysis (PCA) and selected using the Humphrey-Ilgen parallel analysis. Error estimation of the modeling algorithms was evaluated by leave-one-out external cross-validation. These analyses were performed on sMRI and NP variables separately and in combination. The following classification accuracy was obtained for different variables and modeling algorithms. sMRI only: (a) STP-LDA: 64.3% sensitivity and 76.6% specificity, (b) PCA-LDA: 67.9% sensitivity and 72.3% specificity. NP only: (a) STP-LDA: 71.4% sensitivity and 80.9% specificity, (b) PCA-LDA: 78.5% sensitivity and 91.5% specificity. Combined sMRI-NP: (a) STP-LDA: 64.3% sensitivity and 83.0% specificity, (b) PCA-LDA: 89.3% sensitivity and 93.6% specificity. (i) Maximal diagnostic accuracy was achieved by combining sMRI and NP variables. (ii) NP variables were more informative than sMRI, indicating that cognitive deficits can be detected earlier than volumetric structural abnormalities. (iii) PCA-LDA yielded more accurate classification than STP-LDA. As these sMRI and NP tests are widely available, they can increase accuracy of early intervention strategies and possibly be used in evaluating treatment response.


Assuntos
Modelos Neurológicos , Testes Neuropsicológicos/normas , Transtornos Psicóticos/diagnóstico , Esquizofrenia/diagnóstico , Adulto , Biomarcadores , Biologia Computacional/métodos , Diagnóstico Precoce , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Transtornos Psicóticos/psicologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adulto Jovem
19.
Schizophr Bull ; 37(1): 222-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19770491

RESUMO

BACKGROUND: Emerging evidence implicates white matter (WM) abnormalities in the pathophysiology of schizophrenia. However, there is considerable heterogeneity in the presentation of WM abnormalities in the existing studies. The object of this study was to evaluate WM integrity in a large sample of patients with first-episode (FE) and chronic schizophrenia in comparison to matched control groups. Our goal was to assess whether WM findings occurred early in the illness or whether these abnormalities developed with the illness over time. METHODS: Participants included 114 patients with schizophrenia (31 FE and 83 chronic patients) and 138 matched controls. High-resolution structural and diffusion tensor images were obtained on all participants. Measures of fractional anisotropy (FA) were calculated for the 4 cortical lobes and the cerebellum and brain stem. RESULTS: FA was significant lower in patients vs controls in the whole brain and individually in the frontal, parietal, occipital, and temporal lobes. FA was not significantly different in the brain stem or cerebellum. FA differences were significant only in patients with chronic schizophrenia and not in the FE group. CONCLUSIONS: We found global differences in the WM microstructure in patients with chronic but not FE schizophrenia. These findings suggest progressive alterations in WM microstructure.


Assuntos
Encéfalo/patologia , Imagem de Tensor de Difusão , Esquizofrenia/patologia , Adulto , Estudos de Casos e Controles , Feminino , Lobo Frontal/patologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Lobo Temporal/patologia
20.
J Rheumatol ; 37(9): 1834-43, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20551095

RESUMO

OBJECTIVE: Studies that have examined abnormalities in cerebral blood flow (CBF) in patients with systemic lupus erythematosus (SLE) reported CBF relative to a region assumed to be normal in the brain. We examined the absolute differences in both regional CBF and cerebral blood volume (CBV) between patients with SLE and healthy controls. METHODS: CBF and CBV were measured with dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI), a technique that provides an alternative to radionuclide perfusion studies and permits quantitative anatomic, CBF, and CBV imaging in a single scanning session. CBF and CBV were measured in lesions and in normal-appearing tissue in the major cerebral and subcortical brain regions. Unlike most perfusion studies in SLE, CBF and CBV values were not normalized to a region of the brain assumed to be healthy. RESULTS: CBF and CBV within MRI-visible lesions were markedly reduced relative to surrounding normal-appearing white matter. CBF and CBV in normal-appearing tissue were both higher in SLE patient groups, with or without lesions, relative to the control group. CONCLUSION: DSC MRI, without normalization to a region presumed to be healthy, revealed that CBF and CBV in normal-appearing tissue in patients with SLE was higher than CBF and CBV in controls. Since this finding was made in subgroups of patients with and without lesions, the higher CBF and CBV appear to precede lesion pathology.


Assuntos
Encéfalo/anatomia & histologia , Circulação Cerebrovascular/fisiologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Fluxo Sanguíneo Regional/fisiologia , Adulto , Meios de Contraste/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA