RESUMO
BACKGROUND: Cerebral cavernous malformations (CCMs) are vascular malformations that frequently cause stroke. CCMs arise due to loss of function in one of the genes that encode the CCM complex, a negative regulator of MEKK3-KLF2/4 signaling in vascular endothelial cells. Gain-of-function mutations in PIK3CA (encoding the enzymatic subunit of the PI3K (phosphoinositide 3-kinase) pathway associated with cell growth) synergize with CCM gene loss-of-function to generate rapidly growing lesions. METHODS: We recently developed a model of CCM formation that closely reproduces key events in human CCM formation through inducible CCM loss-of-function and PIK3CA gain-of-function in mature mice. In the present study, we use this model to test the ability of rapamycin, a clinically approved inhibitor of the PI3K effector mTORC1, to treat rapidly growing CCMs. RESULTS: We show that both intraperitoneal and oral administration of rapamycin arrests CCM growth, reduces perilesional iron deposition, and improves vascular perfusion within CCMs. CONCLUSIONS: Our findings further establish this adult CCM model as a valuable preclinical model and support clinical testing of rapamycin to treat rapidly growing human CCMs.
Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Humanos , Adulto , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/tratamento farmacológico , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Sirolimo/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismoRESUMO
Normal placental development and angiogenesis are crucial for fetal growth and maternal health during pregnancy. However, molecular regulation of placental angiogenesis has been difficult to study due to a lack of specific genetic tools that isolate the placenta from the embryo and yolk sac. To address this gap in knowledge we recently developed Hoxa13 Cre mice in which Cre is expressed in allantois-derived cells, including placental endothelial and stromal cells. Mice lacking the transcriptional regulators Yes-associated protein (YAP) and PDZ-binding motif (TAZ) in allantois-derived cells exhibit embryonic lethality at midgestation with compromised placental vasculature. snRNA-seq analysis revealed transcriptional changes in placental stromal cells and endothelial cells. YAP/TAZ mutants exhibited significantly reduced placental stromal cells prior to the endothelial architectural change, highlighting the role of these cells in placental vascular growth. These results reveal a central role for YAP/TAZ signaling during placental vascular growth and implicate Hoxa13 -derived placental stromal cells as a critical component of placental vascularization.