Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 119(1): 84-99, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578218

RESUMO

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Assuntos
Fenilalanina , Folhas de Planta , Solanum lycopersicum , Compostos Orgânicos Voláteis , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Fenilalanina/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetaldeído/farmacologia , Mariposas/fisiologia , Mariposas/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Manduca/fisiologia
2.
Sci Rep ; 8(1): 8458, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855556

RESUMO

To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH). Molecular analyses of transgenic plants revealed stable integration and expression of the fusion gene. In planta insect bioassays on transgenics disclosed enhanced levels of resistance compared to the control plants. High insect mortality of YSB, LF and BPH was observed on transgenics compared to that of control plants. Furthermore, honeydew assays revealed significant decreases in the feeding ability of BPH on transgenic plants as compared to the controls. Ligand blot analysis, using BPH insects fed on cry1Ac::asal transgenic rice plants, revealed a modified receptor protein-binding pattern owing to its ability to bind to additional receptors in insects. The overall results authenticate that Cry1Ac::ASAL protein is endowed with remarkable entomotoxic effects against major lepidopteran and hemipteran insects. As such, the fusion gene appears promising and can be introduced into various other crops to control multiple insect pests.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Hormônios de Inseto/genética , Oryza/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Hemípteros/efeitos dos fármacos , Hemípteros/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Oryza/genética , Plantas Geneticamente Modificadas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
3.
J Biotechnol ; 171: 71-5, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24355805

RESUMO

Different transgenic crop plants, developed with δ-endotoxins of Bacillus thuringiensis (Bt) and mannose-specific plant lectins, exhibited significant protection against chewing and sucking insects. In the present study, a synthetic gene (cry-asal) encoding the fusion-protein having 488 amino acids, comprising DI and DII domains from Bt Cry1Ac and Allium sativum agglutinin (ASAL), was cloned and expressed in Escherichia coli. Ligand blot analysis disclosed that the fusion-protein could bind to more number of receptors of brush border membrane vesicle (BBMV) proteins of Helicoverpa armigera. Artificial diet bioassays revealed that 0.025 µg/g and 0.50 µg/g of fusion-protein were sufficient to cause 100% mortality in Pectinophora gossypiella and H. armigera insects, respectively. As compared to Cry1Ac, the fusion-protein showed enhanced (8-fold and 30-fold) insecticidal activity against two major lepidopteran pests. Binding of fusion-protein to the additional receptors in the midgut cells of insects is attributable to its enhanced entomotoxic effect. The synthetic gene, first of its kind, appears promising and might serve as a potential candidate for engineering crop plants against major insect pests.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Lepidópteros/efeitos dos fármacos , Lectinas de Ligação a Manose/genética , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Larva/efeitos dos fármacos , Lectinas de Ligação a Manose/metabolismo , Controle Biológico de Vetores , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
4.
J Mol Graph Model ; 33: 61-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22182469

RESUMO

Genetic engineering of Bacillus thuringiensis (Bt) Cry proteins has resulted in the synthesis of various novel toxin proteins with enhanced insecticidal activity and specificity towards different insect pests. In this study, a fusion protein consisting of the DI-DII domains of Cry1Ac and garlic lectin (ASAL) has been designed in silico by replacing the DIII domain of Cry1Ac with ASAL. The binding interface between the DI-DII domains of Cry1Ac and lectin has been identified using protein-protein docking studies. Free energy of binding calculations and interaction profiles between the Cry1Ac and lectin domains confirmed the stability of fusion protein. A total of 18 hydrogen bonds was observed in the DI-DII-lectin fusion protein compared to 11 hydrogen bonds in the Cry1Ac (DI-DII-DIII) protein. Molecular mechanics/Poisson-Boltzmann (generalized-Born) surface area [MM/PB (GB) SA] methods were used for predicting free energy of interactions of the fusion proteins. Protein-protein docking studies based on the number of hydrogen bonds, hydrophobic interactions, aromatic-aromatic, aromatic-sulphur, cation-pi interactions and binding energy of Cry1Ac/fusion proteins with the aminopeptidase N (APN) of Manduca sexta rationalised the higher binding affinity of the fusion protein with the APN receptor compared to that of the Cry1Ac-APN complex, as predicted by ZDOCK, Rosetta and ClusPro analysis. The molecular binding interface between the fusion protein and the APN receptor is well packed, analogously to that of the Cry1Ac-APN complex. These findings offer scope for the design and development of customized fusion molecules for improved pest management in crop plants.


Assuntos
Proteínas de Bactérias/química , Antígenos CD13/química , Endotoxinas/química , Proteínas Hemolisinas/química , Lectinas/química , Manduca/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Antígenos CD13/metabolismo , Endotoxinas/metabolismo , Alho/química , Proteínas Hemolisinas/metabolismo , Ligação de Hidrogênio , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lectinas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Conformação Proteica , Engenharia de Proteínas , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA