Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell ; 167(1): 248-259.e12, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662092

RESUMO

Synthetic biology uses living cells as molecular foundries for the biosynthesis of drugs, therapeutic proteins, and other commodities. However, the need for specialized equipment and refrigeration for production and distribution poses a challenge for the delivery of these technologies to the field and to low-resource areas. Here, we present a portable platform that provides the means for on-site, on-demand manufacturing of therapeutics and biomolecules. This flexible system is based on reaction pellets composed of freeze-dried, cell-free transcription and translation machinery, which can be easily hydrated and utilized for biosynthesis through the addition of DNA encoding the desired output. We demonstrate this approach with the manufacture and functional validation of antimicrobial peptides and vaccines and present combinatorial methods for the production of antibody conjugates and small molecules. This synthetic biology platform resolves important practical limitations in the production and distribution of therapeutics and molecular tools, both to the developed and developing world.


Assuntos
Formação de Anticorpos , Peptídeos Catiônicos Antimicrobianos/biossíntese , Vacinas/biossíntese , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Sistema Livre de Células , Técnicas de Química Combinatória , Humanos , Biossíntese de Proteínas , Biologia Sintética , Transcrição Gênica , Vacinas/genética
2.
Nature ; 565(7737): 112-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542153

RESUMO

Many enzymes catalyse reactions that proceed through covalent acyl-enzyme (ester or thioester) intermediates1. These enzymes include serine hydrolases2,3 (encoded by one per cent of human genes, and including serine proteases and thioesterases), cysteine proteases (including caspases), and many components of the ubiquitination machinery4,5. Their important acyl-enzyme intermediates are unstable, commonly having half-lives of minutes to hours6. In some cases, acyl-enzyme complexes can be stabilized using substrate analogues or active-site mutations but, although these approaches can provide valuable insight7-10, they often result in complexes that are substantially non-native. Here we develop a strategy for incorporating 2,3-diaminopropionic acid (DAP) into recombinant proteins, via expansion of the genetic code11. We show that replacing catalytic cysteine or serine residues of enzymes with DAP permits their first-step reaction with native substrates, allowing the efficient capture of acyl-enzyme complexes that are linked through a stable amide bond. For one of these enzymes, the thioesterase domain of valinomycin synthetase12, we elucidate the biosynthetic pathway by which it progressively oligomerizes tetradepsipeptidyl substrates to a dodecadepsipeptidyl intermediate, which it then cyclizes to produce valinomycin. By trapping the first and last acyl-thioesterase intermediates in the catalytic cycle as DAP conjugates, we provide structural insight into how conformational changes in thioesterase domains of such nonribosomal peptide synthetases control the oligomerization and cyclization of linear substrates. The encoding of DAP will facilitate the characterization of diverse acyl-enzyme complexes, and may be extended to capturing the native substrates of transiently acylated proteins of unknown function.


Assuntos
Biocatálise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Valinomicina/biossíntese , beta-Alanina/análogos & derivados , Vias Biossintéticas , Cisteína/metabolismo , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Domínios Proteicos , Serina/metabolismo , Especificidade por Substrato , beta-Alanina/metabolismo
3.
Chembiochem ; 24(24): e202300594, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37750576

RESUMO

Stapled peptides have rapidly established themselves as a powerful technique to mimic α-helical interactions with a short peptide sequence. There are many examples of stapled peptides that successfully disrupt α-helix-mediated protein-protein interactions, with an example currently in clinical trials. DNA-protein interactions are also often mediated by α-helices and are involved in all transcriptional regulation processes. Unlike DNA-binding small molecules, which typically lack DNA sequence selectivity, DNA-binding proteins bind with high affinity and high selectivity. These are ideal candidates for the design DNA-binding stapled peptides. Despite the parallel to protein-protein interaction disrupting stapled peptides and the need for sequence specific DNA binders, there are very few DNA-binding stapled peptides. In this review we examine all the known DNA-binding stapled peptides. Their design concepts are compared to stapled peptides that disrupt protein-protein interactions and based on the few examples in the literature, DNA-binding stapled peptide trends are discussed.


Assuntos
Regulação da Expressão Gênica , Peptídeos , Peptídeos/química , Sequência de Aminoácidos , DNA
4.
Bioorg Med Chem Lett ; 84: 129210, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858079

RESUMO

The armeniaspirol family of natural product antibiotics have been shown to inhibit the ATP-dependent proteases ClpXP and ClpYQ and disrupt membrane potential through shuttling of protons across the membrane. Herein we investigate their ability to disrupt the proton motive force (PMF). We show, using a voltage sensitive, that armeniaspiols disrupt the electrical membrane potential (ΔΨ) component of the PMF and not the transmembrane proton gradient (ΔpH). Using checkerboard assays, we confirm this by showing antagonism, with kanamycin, an antibiotic that required ΔΨ for penetration. By evaluating the antibiotic activity and disruption of the PMF by sixteen armeniaspirol analogs, we find that disruption of the PMF is necessary but not sufficient for antibiotic activity. Analogs that are potent disruptors of the PMF without possessing the ability to inhibit ClpXP and ClpYQ are not potent antibiotics. Thus we propose that the armeniaspirols utilize a dual mechanism of action where they disrupt PMF and inhibit the ATP-dependent proteases ClpXP and ClpYQ. This type of dual mechanism has been observed in other natural product-based antibiotics, most notably chelocardin.


Assuntos
Força Próton-Motriz , Tilacoides , Tilacoides/metabolismo , Prótons , Antibacterianos/farmacologia , Antibacterianos/metabolismo
5.
Bioorg Med Chem Lett ; 96: 129506, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820774

RESUMO

Rhizomides are a family of depsipeptide macrolactones synthesized by a non-ribosomal peptide synthetase (NRPS) encoded in the genome of Paraburkholderia rhizoxinica str. HKI 454. In this study, the total and chemoenzymatic synthesis of the depsipeptide rhizomide A is described. Rhizomide A was generated through macrolactamization while thelinear C-terminal N-acetylcysteamine (SNAC) thioester substrate was synthesized through a C-terminal thioesterification strategy. It was shown that the rhizomide A thioesterase (RzmA-TE) is an active macrocyclization catalyst, allowing the chemoenzymatic synthesis of rhizomide A.This work further showcases the biocatalytic power of TEs in accessing complex macrocyclic natural products.


Assuntos
Depsipeptídeos , Biocatálise , Catálise , Ciclização
6.
Org Biomol Chem ; 21(40): 8043-8053, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37750186

RESUMO

Cyclic depsipeptides are an important class of peptide natural products that are defined by the presence of ester and amide bonds within the macrocycle. The structural diversity of depsipeptides has required the development of a broad range of synthetic strategies to access these biologically active compounds. Solid phase peptide synthesis (SPPS) strategies have been an invaluable tool in their synthesis. The key aspect of their synthesis is the macrocyclization strategy. Three main strategies are used, solution phase macrolactamization of acyclic ester containing peptide, on-resin macrolactamization of a sidechain-anchored peptide, and the solution phase macrolactonization of a linear peptide. Additionally, biocatalysts have been used to produce these compounds in a regio- and chemo-selective manner. Each compound offers unique challenges, requiring careful synthetic design to avoid undesirable side reactivity or unwanted epimerization during the esterification and macrocyclizing steps. This focused review analyzes these three strategies for cyclic depsipeptide natural product total synthesis with selected examples from the literature between 2001-2023.


Assuntos
Depsipeptídeos , Depsipeptídeos/química , Estrutura Molecular , Esterificação , Ésteres , Peptídeos Cíclicos/química
7.
J Chem Ecol ; 49(9-10): 528-536, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322383

RESUMO

Disease suppressive composts are known, yet little information on the potential role of specific microbial antagonist within are available. Arthrobacter humicola isolate M9-1A has been obtained from a compost prepared from marine residues and peat moss. The bacterium is a non-filamentous actinomycete with antagonistic activity against plant pathogenic fungi and oomycetes sharing its ecological niche in agri-food microecosystems. Our objective was to identify and characterize compounds with antifungal activity produced by A. humicola M9-1A. Arthrobacter humicola culture filtrates were tested for antifungal activity in vitro and in vivo and a bioassay-guided approach was used to identify potential chemical determinants of its observed activity against molds. The filtrates reduced the development of lesions of Alternaria rot on tomatoes and the ethyl acetate extract inhibited growth of Alternaria alternata. A compound, arthropeptide B [cyclo-(L-Leu, L-Phe, L-Ala, L-Tyr)], was purified from the ethyl acetate extract of the bacterium. Arthropeptide B is a new chemical structure reported for the first time and has shown antifungal activity against A. alternata spore germination and mycelial growth.


Assuntos
Antifúngicos , Arthrobacter , Antifúngicos/química , Alternaria , Plantas
8.
J Org Chem ; 87(22): 15634-15643, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36322913

RESUMO

The natural product armeniaspirol possesses a unique spirocyclic N,O-ketal in an α,ß-dichloro-α,ß-unsaturated lactam scaffold that has proved challenging to synthesize. Herein, we characterize the oxidative chlorination of pyrrole-2-carboxylate derivatives that rapidly generates this scaffold. The scope of this oxidation was extended to a series of esters and amides. Pyrrole-2-ketones could not be converted into the lactam due to an oxidative fragmentation. This result was unexpected since chloro-armeniaspirol has been synthesized via oxidative chlorination of a pyrrole-2-ketone. Examination of this successful oxidation showed that the desired scaffold was accessed due to intramolecular trapping from the neighboring free phenol, preventing fragmentation. Using the product of methyl N-methyl pyrrole-2-carboxylate oxidation 7b, we attempted to access the natural product armeniaspirol 2; however, an unanticipated Lewis acid-mediated rearrangement led to formation of a constitutional isomer, pseudoarmeniaspirol A 1. A small panel of pseudoarmeniaspirol analogues was synthesized and evaluated for antibiotic activity, inhibition of the targets of armeniaspirol, ClpXP and ClpYQ, and protonophore activity. While pseudoarmeniaspirol shows antibiotic activity, it does not target ClpXP or ClpYQ and has less protonophore activity than the natural product.


Assuntos
Produtos Biológicos , Ácidos de Lewis , Pirróis , Cetonas , Antibacterianos , Lactamas
9.
BMC Genomics ; 22(1): 591, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348672

RESUMO

BACKGROUND: Fusarium head blight is a disease of global concern that reduces crop yields and renders grains unfit for consumption due to mycotoxin contamination. Fusarium poae is frequently associated with cereal crops showing symptoms of Fusarium head blight. While previous studies have shown F. poae isolates produce a range of known mycotoxins, including type A and B trichothecenes, fusarins and beauvericin, genomic analysis suggests that this species may have lineage-specific accessory chromosomes with secondary metabolite biosynthetic gene clusters awaiting description. METHODS: We examined the biosynthetic potential of 38 F. poae isolates from Eastern Canada using a combination of long-read and short-read genome sequencing and untargeted, high resolution mass spectrometry metabolome analysis of extracts from isolates cultured in multiple media conditions. RESULTS: A high-quality assembly of isolate DAOMC 252244 (Fp157) contained four core chromosomes as well as seven additional contigs with traits associated with accessory chromosomes. One of the predicted accessory contigs harbours a functional biosynthetic gene cluster containing homologs of all genes associated with the production of apicidins. Metabolomic and genomic analyses confirm apicidins are produced in 4 of the 38 isolates investigated and genomic PCR screening detected the apicidin synthetase gene APS1 in approximately 7% of Eastern Canadian isolates surveyed. CONCLUSIONS: Apicidin biosynthesis is linked to isolate-specific putative accessory chromosomes in F. poae. The data produced here are an important resource for furthering our understanding of accessory chromosome evolution and the biosynthetic potential of F. poae.


Assuntos
Fusarium , Canadá , Cromossomos , Fusarium/genética , Peptídeos Cíclicos
10.
Fungal Genet Biol ; 157: 103633, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619360

RESUMO

Vegetative incompatibility (VI) is a form of non-self allorecognition in filamentous fungi that restricts conspecific hyphal fusion and the formation of heterokaryons. In the chestnut pathogenic fungus, Cryphonectria parasitica, VI is controlled by six vic loci and has been of particular interest because it impedes the spread of hypoviruses and thus biocontrol strategies. We use nuclear magnetic resonance and high-resolution mass spectrometry to characterize alterations in the metabolome of C. parasitica over an eight-day time course of vic3 incompatibility. Our findings support transcriptomic data that indicated remodeling of secondary metabolite profiles occurs during vic3 -associated VI. VI-associated secondary metabolites include novel forms of calbistrin, decumbenone B, a sulfoxygenated farnesyl S-cysteine analog, lysophosphatidylcholines, and an as-yet unidentified group of lipid disaccharides. The farnesyl S-cysteine analog is structurally similar to pheromones predicted to be produced during VI and is here named 'crypheromonin'. Mass features associated with C. parasitica secondary metabolites skyrin, rugulosin and cryphonectric acid were also detected but were not VI specific. Partitioning of VI-associated secondary metabolites was observed, with crypheromonins and most calbistrins accumulating in the growth medium over time, whereas lysophosphatidylcholines, lipid disaccharide-associated mass features and other calbistrin-associated mass features peaked at distinct time points in the mycelium. Secondary metabolite biosynthetic gene clusters and potential biological roles associated with the detected secondary metabolites are discussed.


Assuntos
Ascomicetos , Vírus de RNA , Ascomicetos/genética , Metabolômica , Micélio
11.
J Nat Prod ; 83(6): 1990-1997, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32519859

RESUMO

Cereulide is a toxic cyclic depsidodecapeptide produced in Bacillus cereus by two nonribosomal peptide synthetases, CesA and CesB. While highly similar in structure to valinomycin and with a homologous biosynthetic gene cluster, recent work suggests that cereulide is produced via a different mechanism that relies on a noncanonical coupling of two didepsipeptide-peptidyl carrier protein (PCP) bound intermediates. Ultimately this alternative mechanism generates a tetradepsipeptide-PCP bound intermediate that differs from the tetradepsipeptide-PCP intermediate predicted from canonical activity of CesA and CesB. To differentiate between the mechanisms, both tetradepsipeptides were prepared as N-acetyl cysteamine thioesters (SNAC), and the ability of the purified recombinant terminal CesB thioesterase (CesB TE) to oligomerize and macrocyclize each substrate was probed. Only the canonical substrate is converted to cereulide, ruling out the alternative mechanism. It was demonstrated that CesB TE can use related tetradepsipeptide substrates, such as the valinomycin tetradespipetide and a hybrid cereulide-valinomycin tetradepsipetide in conjunction with its native substrate to generate chimeric natural products. This work clarifies the biosynthetic origins of cereulide and provides a powerful biocatalyst to access analogues of these ionophoric natural products.


Assuntos
Depsipeptídeos/biossíntese , Esterases/metabolismo , Oligopeptídeos/metabolismo , Bacillus cereus/enzimologia , Catálise , Ciclização , Estrutura Molecular , Peptídeo Sintases
12.
Org Biomol Chem ; 16(32): 5771-5779, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30052255

RESUMO

A key missing tool in the chemist's toolbox is an effective biocatalyst for macrocyclization. Macrocycles limit the conformational flexibility of small molecules, often improving their ability to bind selectively and with high affinity to a target, making them a privileged structure in drug discovery. Macrocyclic natural product biosynthesis offers an obvious starting point for biocatalyst discovery via the native macrocycle forming biosynthetic mechanism. Herein we demonstrate that the thioesterase domains (TEs) responsible for macrocyclization of resorcylic acid lactones are promising catalysts for the chemoenzymatic synthesis of 12- to 18-member ring macrolactones and macrolactams. The TE domains responsible for zearalenone and radicicol biosynthesis successfully generate resorcylate-like 12- to 18-member macrolactones and a 14-member macrolactam. In addition these enzymes can also macrolactonize a non-resorcylate containing depsipeptide, suggesting they are versatile biocatalysts. Simple saturated omega-hydroxy acyl chains are not macrocyclized, nor are the alpha-beta unsaturated derivatives, clearly outlining the scope of the substrate tolerance. These data dramatically expand our understanding of substrate tolerance of these enzymes and are consistent with our understanding of the role of TEs in iterative polyketide biosynthesis. In addition this work shows these TEs to be the most substrate tolerant polyketide macrocyclizing enzymes known, accessing resorcylate lactone and lactams as well as cyclicdepsipeptides, which are highly biologically relevant frameworks.

13.
Biochim Biophys Acta ; 1860(3): 486-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26592346

RESUMO

Type I polyketide synthases (PKSs) are giant multidomain proteins that synthesize many therapeutics and other natural products. The synthesis proceeds by a thiotemplate mechanism whereby intermediates are covalently attached to the PKS. The release of the final polyketide is catalyzed by the terminal thioesterase (TE) domain through hydrolysis, transesterification, or macrocyclization. The PKS 6-deoxyerythronolide B synthase (DEBS) produces the 14-membered macrolide core of the clinically important antibiotic erythromycin. The TE domain of DEBS (DEBS TE) has well-established, empirically-defined specificities for hydrolysis or macrocyclization of native and modified substrates. We present efforts towards understanding the structural basis for the specificity of the thioesterase reaction in DEBS TE using a set of novel diphenyl alkylphosphonates, which mimic substrates that are specifically cyclized or hydrolyzed by DEBS TE. We have determined structures of a new construct of DEBS TE alone at 1.7Å, and DEBS TE bound with a simple allylphosphonate at 2.1Å resolution. Other, more complex diphenyl alkylphosphonates inhibit DEBS TE, but we were unable to visualize these faithful cyclization analogs in complex with DEBS TE. This work represents a first step towards using DEBS TE complexed with sophisticated substrate analogs to decipher the specificity determinants in this important reaction.


Assuntos
Eritromicina/análogos & derivados , Tioléster Hidrolases/química , Domínio Catalítico , Eritromicina/biossíntese , Estrutura Terciária de Proteína , Especificidade por Substrato
14.
Molecules ; 22(5)2017 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28468277

RESUMO

Bacterial polyketides are highly biologically active molecules that are frequently used as drugs, particularly as antibiotics and anticancer agents, thus the discovery of new polyketides is of major interest. Since the 1980s discovery of polyketides has slowed dramatically due in large part to the repeated rediscovery of known compounds. While recent scientific and technical advances have improved our ability to discover new polyketides, one key area has been under addressed, namely the distribution of polyketide-producing bacteria in the environment. Identifying environments where producing bacteria are abundant and diverse should improve our ability to discover (bioprospect) new polyketides. This review summarizes for the bioprospector the state-of-the-field in terrestrial microbial ecology. It provides insight into the scientific and technical challenges limiting the application of microbial ecology discoveries for bioprospecting and summarizes key developments in the field that will enable more effective bioprospecting. The major recent efforts by researchers to sample new environments for polyketide discovery is also reviewed and key emerging environments such as insect associated bacteria, desert soils, disease suppressive soils, and caves are highlighted. Finally strategies for taking and characterizing terrestrial samples to help maximize discovery efforts are proposed and the inclusion of non-actinomycetal bacteria in any terrestrial discovery strategy is recommended.


Assuntos
Antibacterianos/química , Microbiologia Ambiental , Policetídeos/química , Animais , Antibacterianos/isolamento & purificação , Descoberta de Drogas , Genes Bacterianos , Humanos , Insetos/microbiologia , Tipagem Molecular , Policetídeos/isolamento & purificação
15.
Nat Prod Rep ; 33(2): 183-202, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25642666

RESUMO

Type 1, α/ß hydrolase-like thioesterase (TE) domains are essential offloading enzymes, releasing covalently bound products from fatty acid, polyketide, and non-ribosomal peptide biosynthetic complexes. The release step can occur by attack of an exogenous nucleophile effecting hydrolysis or transesterification or by an intramolecular O-, N-, or C-nucleophile, effecting macrolactonization, macrolactamization or Claisen-like condensation of the product. Thus in addition to ensuring turnover of the pathway, TEs provide access to increased chemical diversity. We review the diversity, structure, and mechanism of PKS and NRPS TEs and discuss recent works that highlight the role of TEs as potential arbitrators in offloading. In particular, we examine cases where TEs act as logic gates that ask a particular question about the substrate and use this information to determine the substrate's fate. As the TE mechanism occurs via two steps, we analyze both the loading and release steps independently as logic gates. The use of logic gates provides an important perspective when evaluating the evolution of TEs within a pathway, as well as highlighting work towards the goal of predicting TE function in unknown and engineered pathways.


Assuntos
Produtos Biológicos/metabolismo , Palmitoil-CoA Hidrolase/metabolismo , Peptídeo Sintases/metabolismo , Estrutura Molecular
16.
J Org Chem ; 81(2): 415-23, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26675500

RESUMO

Transannular 2,6-disubstituted pyrans, like the one found in the cytotoxic marine natural product neopeltolide, are a key functional group in many polyketides. While oxa-conjugate additions have been shown to provide direct and rapid access to tetrahydropyrans in acyclic neopeltolide intermediates, a transannular strategy for construction of this ring system in a macrocyclic core has not been investigated. In this study, we demonstrate that a transannular oxa-conjugate addition strategy is a viable approach to the construction of the bicyclic core of neopeltolide. We show that transannular addition occurs readily with an α,ß-unsaturated ketone as the Michael acceptor and does not occur when an α,ß-unsaturated ester is the Michael acceptor. Our data indicates that oxa-conjugate addition is reversible and that the stereochemical outcome can be under thermodynamic control. Using computational chemistry, we show that the lowest energy diastereomer is the desired cis-pyran found in neopeltolide, and we experimentally demonstrate that the trans and cis diastereomers are interconvertible under reaction conditions with the cis-pyran product predominating. This oxa-conjugate addition strategy should provide a viable route to accessing the fully elaborated macrocyclic core of neopeltolide.

17.
Angew Chem Int Ed Engl ; 55(39): 12018-21, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27538580

RESUMO

Legionaminic acid, Leg5,7Ac2 , a nonulosonic acid like 5-acetamido neuraminic acid (Neu5Ac, sialic acid), is found in cell surface glycoconjugates of bacteria including the pathogens Campylobacter jejuni, Acinetobacter baumanii and Legionella pneumophila. The presence of Leg5,7Ac2 has been correlated with virulence in humans by mechanisms that likely involve subversion of the host's immune system or interactions with host cell surfaces due to its similarity to Neu5Ac. Investigation into its role in bacterial physiology and pathogenicity is limited as there are no effective sources of it. Herein, we construct a de novo Leg5,7Ac2 biosynthetic pathway by combining multiple metabolic modules from three different microbial sources (Saccharomyces cerevisiae, C. jejuni, and L. pneumophila). Over-expression of this de novo pathway in Escherichia coli that has been engineered to lack two native catabolic pathways, enables significant quantities of Leg5,7Ac2 (≈120 mg L(-1) of culture broth) to be produced. Pure Leg5,7Ac2 could be isolated and converted into CMP-activated sugar for biochemical applications and a phenyl thioglycoside for chemical synthesis applications. This first total biosynthesis provides an essential source of Leg5,7Ac2 enabling study of its role in prokaryotic and eukaryotic glycobiology.


Assuntos
Vias Biossintéticas , Campylobacter jejuni/metabolismo , Escherichia coli/metabolismo , Legionella pneumophila/metabolismo , Ácido N-Acetilneuramínico/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Ácidos Siálicos/metabolismo , Campylobacter jejuni/genética , Escherichia coli/genética , Legionella pneumophila/genética , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Ácidos Siálicos/genética
18.
Cryobiology ; 70(2): 79-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25595636

RESUMO

Most antifreeze proteins (AFPs) exhibit two types of "antifreeze activity" - thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity. The mechanism of TH activity has been studied in depth and is the result of an adsorption of AFPs to the surface of ice with an ice-binding face (IBF). In contrast, the mechanism of ice recrystallization and its inhibition is considerably less understood. In this paper, we examine several different antifreeze proteins, glycoproteins and mutants of the Lolium perenne AFP (LpAFP) to understand how IRI activity is modulated independently of TH activity. This study also examines the ability of the various AF(G)Ps to protect HepG2 cells from cryoinjury. Post-thaw cell viabilities are correlated to TH, IRI activity as well as dynamic ice shaping ability and single ice crystal growth progressions. While these results demonstrate that AF(G)Ps are ineffective as cryoprotectants, they emphasize how ice crystal habit and most importantly, ice growth progression affect HepG2 cell survival during cryopreservation.


Assuntos
Proteínas Anticongelantes/química , Sobrevivência Celular/fisiologia , Criopreservação , Crioprotetores/química , Glicoproteínas/química , Adsorção , Animais , Cristalização , Proteínas de Peixes/química , Células Hep G2 , Humanos , Gelo , Lolium/química , Ligação Proteica
19.
Nucleic Acids Res ; 41(Database issue): D402-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104377

RESUMO

ClusterMine360 (http://www.clustermine360.ca/) is a database of microbial polyketide and non-ribosomal peptide gene clusters. It takes advantage of crowd-sourcing by allowing members of the community to make contributions while automation is used to help achieve high data consistency and quality. The database currently has >200 gene clusters from >185 compound families. It also features a unique sequence repository containing >10 000 polyketide synthase/non-ribosomal peptide synthetase domains. The sequences are filterable and downloadable as individual or multiple sequence FASTA files. We are confident that this database will be a useful resource for members of the polyketide synthases/non-ribosomal peptide synthetases research community, enabling them to keep up with the growing number of sequenced gene clusters and rapidly mine these clusters for functional information.


Assuntos
Bases de Dados Genéticas , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Genes Bacterianos , Internet , Família Multigênica , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/classificação , Filogenia , Policetídeo Sintases/classificação , Policetídeos/metabolismo , Software
20.
J Bacteriol ; 196(14): 2543-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24794562

RESUMO

There is a wealth of information on the genetic regulation and biochemical properties of bacterial C4-dicarboxylate transport systems. In sharp contrast, there are far fewer studies describing the transport and assimilation of C5-dicarboxylates among bacteria. In an effort to better our understanding on this subject, we identified the structural and regulatory genes necessary for the utilization of α-ketoglutarate (α-KG) in Pseudomonas aeruginosa PAO1. The PA5530 gene, encoding a putative dicarboxylate transporter, was found to be essential for the growth of P. aeruginosa PAO1 on both α-KG and glutarate (another C5-dicarboxylate). Metabolite analysis confirmed that the PA5530 gene was necessary for the uptake of extracellular α-KG. Like other substrate-inducible transporter genes, expression of the PA5530 gene was induced by extracellular C5-dicarboxylates. It was later found that the expression of the PA5530 gene was driven solely by a -24/-12 promoter recognized by the alternative sigma factor RpoN. Surprisingly, the enhancer binding protein MifR, which is known to have an essential role in biofilm development, was required for the expression of the PA5530 gene. The MifR protein is homologous to other transcriptional regulators involved in dicarboxylate assimilation, suggesting that MifR might interact with RpoN to activate the expression of the PA5530 gene in response to extracellular C5-dicarboxylates, especially α-KG. The results of this study provide a framework for exploring the assimilation of α-KG in other pseudomonads.


Assuntos
Ácidos Cetoglutáricos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA