RESUMO
Multiple stressors often act concomitantly on ecosystems but detection of species responses follows the "single species-single driver" strategy, and cumulative impacts are seldom considered. During 1990-2010, multiple perturbations in the Caspian Sea, led to the decline of kilka, sturgeon and Caspian seal populations. Specific causes for their collapse were identified but a cumulative assessment has never been carried out. Using loop analysis, a qualitative modelling technique suitable in poor-data contexts, we show how multiple drivers can be combined to assess their cumulative impact. We confirm that the decline of kilka, sturgeon and Caspian seal populations is compatible with a net effect of the concomitant perturbations. Kilkas collapse was certainly due to the outburst of M. leidyi and overfishing. In addition, the excess nutrient might have conspired to reduce these populations. The interplay between concurrent drivers produces trade-offs between opposite effects and ecosystem management must face this challenge.
Assuntos
Ecossistema , Focas Verdadeiras , Animais , Mar Cáspio , Conservação dos Recursos Naturais , Pesqueiros , PeixesRESUMO
This theme issue features 18 papers exploring ecological interactions, encompassing metabolic, social, and spatial connections alongside traditional trophic networks. This integration enriches food web research, offering insights into ecological dynamics. By examining links across organisms, populations, and ecosystems, a hierarchical approach emerges, connecting horizontal effects within organizational levels vertically across biological organization levels. The inclusion of interactions involving humans is a key focus, highlighting the need for their integration into ecology given the complex interactions between human activities and ecological systems in the Anthropocene. The comprehensive exploration in this theme issue sheds light on the interconnectedness of ecological systems and the importance of considering diverse interactions in understanding ecosystem dynamics. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Assuntos
Ecossistema , Cadeia Alimentar , Humanos , Animais , Atividades Humanas , Fitoplâncton/metabolismo , Água do Mar/microbiologia , Peixes/metabolismo , Pesqueiros/legislação & jurisprudênciaRESUMO
In Colombia, the long-lasting internal conflict heavily shaped the socio-ecological context and imposed relationships that persisted after the peace agreement was signed in 2016. One question of interest is whether policies or interventions conceived to attain desirable goals for the post-conflict society may be effective or, rather, if the constraints imposed by the conflict scenario might produce unintended effects, either on the environmental or the social side. To explore this issue, we envisaged the socio-ecological system as a parsimonious set of characteristic ecological and social variables within the conflict-related framework and reconstructed their interactions, exploiting elicitation-based information and the literature. We visualized the resulting interactive networks as signed digraphs. Applying the qualitative technique of loop analysis combined with numerical simulations, we predicted the response of the system to policies as drivers of change, such as subsidized credit to capital-intensive activities or policies that increase small farming competitiveness and access to markets. Highlighting causal linkages reveals that the persistence of conflict factors may produce unexpected interdependencies between licit and illicit activities and that, only in a few cases, the persistence of these mechanisms allows synergies between desirable goals.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Assuntos
Conflitos Armados , Colômbia , HumanosRESUMO
Climate change affects ecosystems at several levels: by altering the spatial distribution of individual species, by locally rewiring interspecific interactions, and by reorganizing trophic networks at larger scales. The dynamics of marine food webs are becoming more and more sensitive to spatial processes and connections in the seascape. As a case study, we study the atlantification of the Barents Sea: we compare spatio-temporal subsystems at three levels: the identity of key organisms, critically important interactions and the entire food web. Network analysis offers quantitative measurements, including centrality indices, trophic similarity indices, a topological measure of interaction asymmetry and network-level measures. We found that atlantification alters the identity of key species (boreal demersals becoming hubs), results in strongly asymmetric interactions (dominated by haddock), changes the dominant regulation regime (from bottom-up to wasp-waist control) and makes the food web less modular. Since the results of food web analysis may be quite sensitive to network construction, the aggregation of food web data was explicitly studied to increase the robustness of food web analysis. We found that an alternative, mathematical aggregation algorithm better preserves some network properties (e.g. density) of the original, unaggregated network than the biologically inspired aggregation into functional groups. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Assuntos
Mudança Climática , Cadeia Alimentar , Animais , Oceanos e Mares , Modelos BiológicosRESUMO
In coastal lagoons, eutrophication and hydrology are interacting factors that produce distortions in biogeochemical nitrogen (N) and phosphorus (P) cycles. Such distortions affect nutrient relative availability and produce cascade consequences on primary producer's community and ecosystem functioning. In this study, the seasonal functioning of a coastal lagoon was investigated with a multielement approach, via the construction and analysis of network models. Spring and summer networks, both for N and P flows, have been simultaneously compiled for the northern transitional and southern confined area of the hypertrophic Curonian Lagoon (SE Baltic Sea). Ecological Network Analysis was applied to address the combined effect of hydrology and seasonality on biogeochemical processes. Results suggest that the ecosystem is more active and presents higher N and P fluxes in summer compared to spring, regardless of the area. Furthermore, larger internal recycling characterizes the confined compared to the transitional area, regardless of the season. The two areas differed in the fate of available nutrients. The transitional area received large riverine inputs that were mainly transferred to the sea without the conversion into primary producers' biomass. The confined area had fewer inputs but proportionally larger conversion into phytoplankton biomass. In summer, particularly in the confined area, primary production was inefficiently consumed by herbivores. Most phytoplanktonic N and P, in the confined area more than in the transitional area, were conveyed to the detritus pathway where P, more than N, was recycled, contributing to the unbalance in N:P stoichiometry and favouring N-fixing cyanobacteria over other phytoplankton groups. The findings of this study provide a comprehensive understanding of N and P circulation patterns in lagoon areas characterized by different hydrology. They also support the importance of a stoichiometric approach to trace relative differences in N and P recycling and abundance, that promote blooms, drive algal communities and whole ecosystem functioning.
Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Fósforo/análise , Biomassa , Fitoplâncton , EutrofizaçãoRESUMO
The robustness of ecosystems to species losses is a central question in ecology, given the current pace of extinctions and the many species threatened by human impacts, including habitat destruction and climate change. Robustness from the perspective of secondary extinctions has been addressed in the context of food webs to consider the complex network of species interactions that underlie responses to perturbations. In-silico removal experiments have examined the structural properties of food webs that enhance or hamper the robustness of ecosystems to species losses, with a focus on the role of hubs, the most connected species. Here we take a different approach and focus on the role of the connections themselves. We show that trophic links can be divided into functional and redundant based on their contribution to robustness. The analysis of empirical webs shows that hubs are not necessarily the most important species as they may hold many redundant links. Furthermore, the fraction of functional connections is high and constant across systems regardless of size and interconnectedness. The main consequence of this scaling pattern is that ecosystem robustness can be considerably reduced by species extinctions even when these do not result in any secondary extinctions. This introduces the possibility of tipping points in the collapse of ecosystems.
Assuntos
Cadeia Alimentar , Biodiversidade , Ecossistema , Extinção Biológica , Modelos Biológicos , Biologia de SistemasRESUMO
In ecosystems, a single extinction event can give rise to multiple 'secondary' extinctions. Conservation effort would benefit from tools that help forecast the consequences of species removal. One such tool is the dominator tree, a graph-theoretic algorithm that when applied to food webs unfolds their complex architecture, yielding a simpler topology made of linear pathways that are essential for energy delivery. Each species along these chains is responsible for passing energy to the taxa that follow it and, as such, it is indispensable for their survival. To assess the predictive potential of the dominator tree, we compare its predictions with the effects that followed the collapse of the capelin (Mallotus villosus) in the Barents Sea ecosystem. To this end, we first compiled a food web for this ecosystem, then we built the corresponding dominator tree and, finally, we observed whether model predictions matched the empirical observations. This analysis shows the potential and the drawbacks of the dominator trees as a tool for understanding the causes and consequences of extinctions in food webs.
Assuntos
Extinção Biológica , Cadeia Alimentar , Modelos Biológicos , Algoritmos , Animais , Aves , Caniformia , Cetáceos , Conservação dos Recursos Naturais , Ecossistema , Peixes , Biologia Marinha , SalmoniformesRESUMO
In this paper, we investigate the problem of secondary extinction in food webs through the use of dominator trees, network topological structures that reduce food webs to linear pathways that are essential for energy delivery. Each species along these chains is responsible for passing energy to the taxa that follow it, and, as such, it is indispensable for their survival; because of this it is said to dominate them. The higher the number of species a node dominates, the greater the impact resulting from its removal. By computing dominator trees for 13 well-studied food webs we obtained for each of them the number of nodes dominated by a single species and the number of nodes that dominate each species. We illustrate the procedure for the Grassland Ecosystem showing the potential of this method for identifying species that play a major role in energy delivery and are likely to cause the greatest damage if removed. Finally, by means of two indices that measure error and attack sensitivity, we confirm a previous hypothesis that food webs are very robust to random loss of species but very fragile to the selective loss of the hubs.
Assuntos
Evolução Biológica , Ecossistema , Animais , Cadeia Alimentar , Dinâmica PopulacionalRESUMO
In order to achieve improved sustainability, local authorities need to use tools that adequately describe and synthesize environmental information. This article illustrates a methodological approach that organizes a wide suite of environmental indicators into few aggregated indices, making use of correlation, principal component analysis, and fuzzy sets. Furthermore, a weighting system, which includes stakeholders' priorities and ambitions, is applied. As a case study, the described methodology is applied to the Reggio Emilia Province in Italy, by considering environmental information from 45 municipalities. Principal component analysis is used to condense an initial set of 19 indicators into 6 fundamental dimensions that highlight patterns of environmental conditions at the provincial scale. These dimensions are further aggregated in two indices of environmental performance through fuzzy sets. The simple form of these indices makes them particularly suitable for public communication, as they condensate a wide set of heterogeneous indicators. The main outcomes of the analysis and the potential applications of the method are discussed.