Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Environ Microbiol ; 25(6): 1084-1098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36700447

RESUMO

Bacterioplankton communities govern marine productivity and biogeochemical cycling, yet drivers of bacterioplankton assembly remain unclear. Here, we contrast the relative contribution of deterministic processes (environmental factors and biotic interactions) in driving temporal dynamics of bacterioplankton diversity at three different oceanographic time series locations, spanning 15° of latitude, which are each characterized by different environmental conditions and varying degrees of seasonality. Monthly surface samples (5.5 years) were analysed using 16S rRNA amplicon sequencing. The high- and mid-latitude sites of Maria Island and Port Hacking were characterized by high and intermediate levels of environmental heterogeneity, respectively, with both alpha diversity (72%; 24% of total variation) and beta diversity (32%; 30%) patterns within bacterioplankton assemblages explained by day length, ammonium, and mixed layer depth. In contrast, North Stradbroke Island, a sub-tropical location where environmental conditions are less variable, interspecific interactions were of increased importance in structuring bacterioplankton diversity (alpha: 33%; beta: 26%) with environment only contributing 11% and 13% to predicting diversity, respectively. Our results demonstrate that bacterioplankton diversity is the result of both deterministic environmental and biotic processes and that the importance of these different deterministic processes varies, potential in response to environmental heterogeneity.


Assuntos
Organismos Aquáticos , Ecossistema , RNA Ribossômico 16S/genética , Plâncton/genética
2.
Environ Microbiol ; 24(5): 2449-2466, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049099

RESUMO

We investigated the Southern Ocean (SO) prokaryote community structure via zero-radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71-99°E, summer) and Pacific (170-174°W, autumn-winter) sectors of the SO. At higher taxonomic levels (phylum-family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus-zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi- and bathy-abyssopelagic water masses. Common surface bacteria were abundant in several deep-water masses and vice-versa suggesting connectivity between surface and deep-water microbial assemblages. Bacteria from same-sector Antarctic Bottom Water samples showed patchy, high beta-diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep-water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide-scale SO ecosystem microbial modelling.


Assuntos
Ecossistema , Água do Mar , Archaea/genética , Bactérias/genética , Biodiversidade , Oceanos e Mares , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Água
3.
Proc Natl Acad Sci U S A ; 115(35): E8266-E8275, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30108147

RESUMO

Marine microbes along with microeukaryotes are key regulators of oceanic biogeochemical pathways. Here we present a high-resolution (every 0.5° of latitude) dataset describing microbial pro- and eukaryotic richness in the surface and just below the thermocline along a 7,000-km transect from 66°S at the Antarctic ice edge to the equator in the South Pacific Ocean. The transect, conducted in austral winter, covered key oceanographic features including crossing of the polar front (PF), the subtropical front (STF), and the equatorial upwelling region. Our data indicate that temperature does not determine patterns of marine microbial richness, complementing the global model data from Ladau et al. [Ladau J, et al. (2013) ISME J 7:1669-1677]. Rather, NH4+, nanophytoplankton, and primary productivity were the main drivers for archaeal and bacterial richness. Eukaryote richness was highest in the least-productive ocean region, the tropical oligotrophic province. We also observed a unique diversity pattern in the South Pacific Ocean: a regional increase in archaeal and bacterial diversity between 10°S and the equator. Rapoport's rule describes the tendency for the latitudinal ranges of species to increase with latitude. Our data showed that the mean latitudinal ranges of archaea and bacteria decreased with latitude. We show that permanent oceanographic features, such as the STF and the equatorial upwelling, can have a significant influence on both alpha-diversity and beta-diversity of pro- and eukaryotes.


Assuntos
Archaea/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Fitoplâncton/fisiologia , Microbiologia da Água , Regiões Antárticas , Archaea/classificação , Oceano Pacífico , Fitoplâncton/classificação
4.
Sensors (Basel) ; 21(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34640944

RESUMO

Antimicrobial resistance (AMR) is threatening modern medicine. While the primary cost of AMR is paid in the healthcare domain, the agricultural and environmental domains are also reservoirs of resistant microorganisms and hence perpetual sources of AMR infections in humans. Consequently, the World Health Organisation and other international agencies are calling for surveillance of AMR in all three domains to guide intervention and risk reduction strategies. Technologies for detecting AMR that have been developed for healthcare settings are not immediately transferable to environmental and agricultural settings, and limited dialogue between the domains has hampered opportunities for cross-fertilisation to develop modified or new technologies. In this feature, we discuss the limitations of currently available AMR sensing technologies used in the clinic for sensing in other environments, and what is required to overcome these limitations.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Monitoramento Ambiental , Humanos , Organização Mundial da Saúde
5.
Glob Chang Biol ; 26(10): 5613-5629, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32715608

RESUMO

Western boundary currents (WBCs) redistribute heat and oligotrophic seawater from the tropics to temperate latitudes, with several displaying substantial climate change-driven intensification over the last century. Strengthening WBCs have been implicated in the poleward range expansion of marine macroflora and fauna, however, the impacts on the structure and function of temperate microbial communities are largely unknown. Here we show that the major subtropical WBC of the South Pacific Ocean, the East Australian Current (EAC), transports microbial assemblages that maintain tropical and oligotrophic (k-strategist) signatures, to seasonally displace more copiotrophic (r-strategist) temperate microbial populations within temperate latitudes of the Tasman Sea. We identified specific characteristics of EAC microbial assemblages compared with non-EAC assemblages, including strain transitions within the SAR11 clade, enrichment of Prochlorococcus, predicted smaller genome sizes and shifts in the importance of several functional genes, including those associated with cyanobacterial photosynthesis, secondary metabolism and fatty acid and lipid transport. At a temperate time-series site in the Tasman Sea, we observed significant reductions in standing stocks of total carbon and chlorophyll a, and a shift towards smaller phytoplankton and carnivorous copepods, associated with the seasonal impact of the EAC microbial assemblage. In light of the substantial shifts in microbial assemblage structure and function associated with the EAC, we conclude that climate-driven expansions of WBCs will expand the range of tropical oligotrophic microbes, and potentially profoundly impact the trophic status of temperate waters.


Assuntos
Prochlorococcus , Água do Mar , Austrália , Clorofila A , Oceano Pacífico
6.
Environ Microbiol ; 21(5): 1782-1797, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30761716

RESUMO

Exploratory drilling for deep-sea oil and gas resources is planned for the Great Australian Bight (GAB). There is scant knowledge of the region's benthic ecosystems and no baseline information of the region's indigenous oil degrading bacteria. To address this knowledge gap, we used next generation sequencing (NGS) of three marker genes (alkB, c23o and pmoA) to detect and characterize the microbial communities capable of aerobic hydrocarbon degradation. Unique, highly novel microbial communities capable of degrading hydrocarbons occur in surface sediments at depths between 200 and 2800 m. Clustering at 97% demonstrated differences in community structure with depth, changing most markedly between 400 and 1000 m depth on the continental slope, and identified putative functional 'ecotypes' related to depth. Observed differences in community structure showed strong correlations with temperature, other physicochemical properties of the overlying water column and are further modulated by differences in sediment grain size. This study provides important baseline data on hydrocarbon degrading microbial communities prior to the start of petroleum resource extraction. Our data will inform future ecological monitoring of the GAB deep-sea ecosystem.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Aerobiose , Austrália , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Sedimentos Geológicos/análise , Microbiota , Petróleo/metabolismo , Poluição por Petróleo
7.
Biol Lett ; 13(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148831

RESUMO

Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Dióxido de Carbono/fisiologia , Água do Mar/química , Dióxido de Carbono/toxicidade , Mudança Climática , Genética Populacional , Geografia , Concentração de Íons de Hidrogênio , Oceanos e Mares , Seleção Genética
8.
Environ Microbiol ; 18(12): 4485-4500, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27376620

RESUMO

Aerobic Anoxygenic Phototrophic Bacteria (AAnPB) are ecologically important microorganisms, widespread in oceanic photic zones. However, the key environmental drivers underpinning AAnPB abundance and diversity are still largely undefined. The temporal patterns in AAnPB dynamics at three oceanographic reference stations spanning at approximately 15° latitude along the Australian east coast were examined. AAnPB abundance was highly variable, with pufM gene copies ranging from 1.1 × 102 to 1.4 × 105 ml-1 and positively correlated with day length and solar radiation. pufM gene Miseq sequencing revealed that the majority of sequences were closely related to those obtained previously, suggesting that key AAnPB groups are widely distributed across similar environments globally. Temperature was a major structuring factor for AAnPB assemblages across large spatial scales, correlating positively with richness and Gammaproteobacteria (phylogroup K) abundance but negatively with Roseobacter-clade (phylogroup E) abundance, with temperatures between 16°C and 18°C identified as a potential transition zone between these groups. Network analysis revealed that discrete AAnPB populations exploit specific niches defined by varying temperature, light and nutrient conditions in the Tasman Sea system, with evidence for both niche sharing and partitioning amongst closely related operational taxonomic units.


Assuntos
Bactérias Aeróbias/genética , Bactérias Aeróbias/fisiologia , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Água do Mar/microbiologia , Austrália , Luz , Oceanos e Mares , Estações do Ano , Temperatura
9.
Environ Microbiol ; 17(2): 444-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24725346

RESUMO

Terrestrial arid and semi-arid ecosystems (drylands) constitute about 41% of the Earth's land surface and are predicted to experience increasing fluctuations in water and nitrogen availability. Mounting evidence has confirmed the significant importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in nitrification, plant nitrogen availability and atmospheric N2 O emissions, but their responses to environmental perturbations in drylands remain largely unknown. Here we evaluate how the factorial combinations of irrigation and fertilization in forests and land-use change from grassland to forest affects the dynamics of AOA and AOB following a 6-year dryland field study. Potential nitrification rates and AOA and AOB abundances were significantly higher in the irrigated plots, accompanied by considerable changes in community compositions, but their responses to fertilization alone were not significant. DNA-stable isotope probing results showed increased (13) CO2 incorporation into the amoA gene of AOA, but not of AOB, in plots receiving water addition, coupled with significantly higher net mineralization and nitrification rates. High-throughput microarray analysis revealed that active AOA assemblages belonging to Nitrosopumilus and Nitrosotalea were increasingly labelled by (13) CO2 following irrigation. However, no obvious effects of land-use changes on nitrification rates or metabolic activity of AOA and AOB could be observed under dry conditions. We provide evidence that water addition had more important roles than nitrogen fertilization in influencing the autotrophic nitrification in dryland ecosystems, and AOA are increasingly involved in ammonia oxidation when dry soils become wetted.


Assuntos
Amônia/metabolismo , Ecossistema , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Irrigação Agrícola , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fertilizantes , Pradaria , Nitrificação , Ciclo do Nitrogênio , Oxirredução , Árvores/microbiologia , Água/metabolismo
10.
Microb Ecol ; 68(2): 259-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24658413

RESUMO

Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.


Assuntos
Metano/metabolismo , Methylococcaceae/classificação , Consórcios Microbianos , Microbiologia do Solo , Biodiversidade , DNA Bacteriano/genética , Genes Bacterianos , Methylococcaceae/genética , Methylococcaceae/crescimento & desenvolvimento , Países Baixos , Oxirredução , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Solo/química
11.
Commun Biol ; 7(1): 125, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267685

RESUMO

Marine heatwaves (MHWs) cause disruption to marine ecosystems, deleteriously impacting macroflora and fauna. However, effects on microorganisms are relatively unknown despite ocean temperature being a major determinant of assemblage structure. Using data from thousands of Southern Hemisphere samples, we reveal that during an "unprecedented" 2015/16 Tasman Sea MHW, temperatures approached or surpassed the upper thermal boundary of many endemic taxa. Temperate microbial assemblages underwent a profound transition to niche states aligned with sites over 1000 km equatorward, adapting to higher temperatures and lower nutrient conditions bought on by the MHW. MHW conditions also modulate seasonal patterns of microbial diversity and support novel assemblage compositions. The most significant affects of MHWs on microbial assemblages occurred during warmer months, when temperatures exceeded the upper climatological bounds. Trends in microbial response across several MHWs in different locations suggest these are emergent properties of temperate ocean warming, which may facilitate monitoring, prediction and adaptation efforts.


Assuntos
Ecossistema , Raios Infravermelhos , Nutrientes , Temperatura
12.
Appl Environ Microbiol ; 79(13): 4031-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23624469

RESUMO

Microbes play an essential role in ecosystem functions, including carrying out biogeochemical cycles, but are currently considered a black box in predictive models and all global biodiversity debates. This is due to (i) perceived temporal and spatial variations in microbial communities and (ii) lack of ecological theory explaining how microbes regulate ecosystem functions. Providing evidence of the microbial regulation of biogeochemical cycles is key for predicting ecosystem functions, including greenhouse gas fluxes, under current and future climate scenarios. Using functional measures, stable-isotope probing, and molecular methods, we show that microbial (community diversity and function) response to land use change is stable over time. We investigated the change in net methane flux and associated microbial communities due to afforestation of bog, grassland, and moorland. Afforestation resulted in the stable and consistent enhancement in sink of atmospheric methane at all sites. This change in function was linked to a niche-specific separation of microbial communities (methanotrophs). The results suggest that ecological theories developed for macroecology may explain the microbial regulation of the methane cycle. Our findings provide support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles.


Assuntos
Mudança Climática , Ecossistema , Metano/biossíntese , Fenômenos Microbiológicos , Árvores , Análise de Variância , Ecologia , Análise em Microsséries , Modelos Biológicos , Polimorfismo de Fragmento de Restrição , Escócia , Solo/análise
13.
Microorganisms ; 10(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208793

RESUMO

Diatom communities significantly influence ocean primary productivity and carbon cycling, but their spatial and temporal dynamics are highly heterogeneous and are governed by a complex diverse suite of abiotic and biotic factors. We examined the seasonal and biogeographical dynamics of diatom communities in Australian coastal waters using amplicon sequencing data (18S-16S rRNA gene) derived from a network of oceanographic time-series spanning the Australian continent. We demonstrate that diatom community composition in this region displays significant biogeography, with each site harbouring distinct community structures. Temperature and nutrients were identified as the key environmental contributors to differences in diatom communities at all sites, collectively explaining 21% of the variability observed in diatoms assemblages. However, specific groups of bacteria previously implicated in mutualistic ecological interactions with diatoms (Rhodobacteraceae, Flavobacteriaceae and Alteromonadaceae) also explained a further 4% of the spatial dynamics observed in diatom community structure. We also demonstrate that the two most temperate sites (Port Hacking and Maria Island) exhibited strong seasonality in diatom community and that at these sites, winter diatom communities co-occurred with higher proportion of Alteromonadaceae. In addition, we identified significant co-occurrence between specific diatom and bacterial amplicon sequence variants (ASVs), with members of the Roseobacter and Flavobacteria clades strongly correlated with some of the most abundant diatom genera (Skeletonema, Thalassiosira, and Cylindrotheca). We propose that some of these co-occurrences might be indicative of ecologically important interactions between diatoms and bacteria. Our analyses reveal that in addition to physico-chemical conditions (i.e., temperature, nutrients), the relative abundance of specific groups of bacteria appear to play an important role in shaping the spatial and temporal dynamics of marine diatom communities.

14.
ISME Commun ; 2(1): 16, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37938744

RESUMO

Ecological interactions between marine bacteria and phytoplankton play a pivotal role in governing the ocean's major biogeochemical cycles. Among these, members of the marine Roseobacter Group (MRG) can establish mutualistic relationships with phytoplankton that are, in part, maintained by exchanges of the organosulfur compound, dimethylsulfoniopropionate (DMSP). Yet most of what is known about these interactions has been derived from culture-based laboratory studies. To investigate temporal and spatial co-occurrence patterns between members of the MRG and DMSP-producing phytoplankton we analysed 16S and 18S rRNA gene amplicon sequence variants (ASVs) derived from 5 years of monthly samples from seven environmentally distinct Australian oceanographic time-series. The MRG and DMSP-producer communities often displayed contemporaneous seasonality, which was greater in subtropical and temperate environments compared to tropical environments. The relative abundance of both groups varied latitudinally, displaying a poleward increase, peaking (MRG at 33% of total bacteria, DMSP producers at 42% of eukaryotic phototrophs) during recurrent spring-summer phytoplankton blooms in the most temperate site (Maria Island, Tasmania). Network analysis identified 20,140 significant positive correlations between MRG ASVs and DMSP producers and revealed that MRGs exhibit significantly stronger correlations to high DMSP producers relative to other DMSP-degrading bacteria (Pelagibacter, SAR86 and Actinobacteria). By utilising the power of a continental network of oceanographic time-series, this study provides in situ confirmation of interactions found in laboratory studies and demonstrates that the ecological dynamics of an important group of marine bacteria are shaped by the production of an abundant and biogeochemically significant organosulfur compound.

15.
Sci Total Environ ; 809: 151175, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699819

RESUMO

Vertical zonation within estuarine ecosystems can strongly influence microbial diversity and function by regulating competition, predation, and environmental stability. The degree to which microbial communities exhibit horizontal patterns through an estuary has received comparatively less attention. Here, we take a multi-omics ecosurveillance approach to study environmental gradients created by the transition between dominant vegetation types along a near pristine tropical river system (Wenlock River, Far North Queensland, Australia). The study sites included intertidal mudflats fringed by saltmarsh, mangrove or mixed soft substrata habitats. Collected sediments were analyzed for eukaryotes and prokaryotes using small sub-unit (SSU) rRNA gene amplicons to profile the relative taxonomic composition. Central carbon metabolism metabolites and other associated organic polar metabolites were analyzed using established metabolomics-based approaches, coupled with total heavy metals analysis. Eukaryotic taxonomic information was found to be more informative of habitat type. Bacterial taxonomy and community composition also showed habitat-specificity, with phyla Proteobacteria and Cyanobacteria strongly linked to mangroves and saltmarshes, respectively. In contrast, metabolite profiling was critical for understanding the biochemical pathways and expressed functional outputs in these systems that were tied to predicted microbial gene function (16S rRNA). A high degree of metabolic redundancy was observed in the bacterial communities, with the metabolomics data suggesting varying degrees of metabolic criticality based on habitat type. The predicted functions of the bacterial taxa combined with annotated metabolites accounted for the conservative perspective of microbial community redundancy against the putative metabolic pathway impacts in the metabolomics data. Coupling these data demonstrates that habitat-mediated estuarine gradients drive patterns of community diversity and metabolic function and highlights the real redundancy potential of habitat microbiomes. This information is useful as a point of comparison for these sensitive ecosystems and provides a framework for identifying potentially vulnerable or at-risk systems before they are significantly degraded.


Assuntos
Cianobactérias , Microbiota , Ecossistema , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Rios
16.
J Clin Microbiol ; 49(8): 2954-65, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21697324

RESUMO

We have developed a Salmonella genoserotyping array (SGSA) which rapidly generates an antigenic formula consistent with the White-Kauffmann-Le Minor scheme, currently the gold standard for Salmonella serotyping. A set of 287 strains representative of 133 Salmonella serovars was assembled to validate the array and to test the array probes for accuracy, specificity, and reproducibility. Initially, 76 known serovars were utilized to validate the specificity and repeatability of the array probes and their expected probe patterns. The SGSA generated the correct serovar designations for 100% of the known subspecies I serovars tested in the validation panel and an antigenic formula consistent with that of the White-Kauffmann-Le Minor scheme for 97% of all known serovars tested. Once validated, the SGSA was assessed against a blind panel of 100 Salmonella enterica subsp. I samples serotyped using traditional methods. In summary, the SGSA correctly identified all of the blind samples as representing Salmonella and successfully identified 92% of the antigens found within the unknown samples. Antigen- and serovar-specific probes, in combination with a pepT PCR for confirmation of S. enterica subsp. Enteritidis determinations, generated an antigenic formula and/or a serovar designation consistent with the White-Kauffmann-Le Minor scheme for 87% of unknown samples tested with the SGSA. Future experiments are planned to test the specificity of the array probes with other Salmonella serovars to demonstrate the versatility and utility of this array as a public health tool in the identification of Salmonella.


Assuntos
Antígenos de Bactérias/genética , Tipagem Molecular/métodos , Salmonella enterica/classificação , Salmonella enterica/genética , Animais , Genótipo , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sorotipagem/métodos
17.
Appl Environ Microbiol ; 77(16): 5643-54, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21724892

RESUMO

Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Proteobactérias/isolamento & purificação , Microbiologia do Solo , Sphagnopsida/microbiologia , Ácidos/metabolismo , Técnicas de Tipagem Bacteriana , Sequência de Bases , Meios de Cultura/química , DNA Bacteriano/genética , Ecossistema , Genes Bacterianos , Metano/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oxirredução , Fosfolipídeos/metabolismo , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/ultraestrutura , RNA Ribossômico 16S/genética
18.
Appl Microbiol Biotechnol ; 89(1): 189-200, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20809077

RESUMO

Landfills are large sources of CH(4), but a considerable amount of CH(4) can be removed in situ by methanotrophs if their activity can be stimulated through the addition of nitrogen. Nitrogen can, however, lead to increased N(2)O production. To examine the effects of nitrogen and a selective inhibitor on CH(4) oxidation and N(2)O production in situ, 0.5 M of NH(4)Cl and 0.25 M of KNO(3), with and without 0.01% (w/v) phenylacetylene, were applied to test plots at a landfill in Kalamazoo, MI from 2007 November to 2009 July. Nitrogen amendments stimulated N(2)O production but had no effect on CH(4) oxidation. The addition of phenylacetylene stimulated CH(4) oxidation while reducing N(2)O production. Methanotrophs possessing particulate methane monooxygenase and archaeal ammonia-oxidizers (AOAs) were abundant. The addition of nitrogen reduced methanotrophic diversity, particularly for type I methanotrophs. The simultaneous addition of phenylacetylene increased methanotrophic diversity and the presence of type I methanotrophs. Clone libraries of the archaeal amoA gene showed that the addition of nitrogen increased AOAs affiliated with Crenarchaeal group 1.1b, while they decreased with the simultaneous addition of phenylacetylene. These results suggest that the addition of phenylacetylene with nitrogen reduces N(2)O production by selectively inhibiting AOAs and/or type II methanotrophs.


Assuntos
Acetileno/análogos & derivados , Archaea/metabolismo , Bactérias/metabolismo , Metano/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Acetileno/análise , Acetileno/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Proteínas Arqueais/genética , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Gases/metabolismo , Efeito Estufa , Dados de Sequência Molecular , Nitrogênio/análise , Eliminação de Resíduos , Solo/análise
19.
FEMS Microbiol Ecol ; 97(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34498669

RESUMO

Methane availability in freshwaters is usually associated with spatial-temporal variation in methanogenesis. Unusually, however, natural gas macro-seeps occur along the Condamine River in eastern Australia which elevate ambient water-column methane concentrations more than 3,000 times. We quantified the spatial-temporal variation in methane oxidation rates and the total microbial and methanotroph community composition (through the amplification and sequencing of 16S rRNA and particulate methane monooxygenase (pmoA) genes), and the factors mediating this variation, in reaches with and without macro-seeps. Sediment methane oxidation rates were, on average, 29 times greater, and the abundance of methanotrophs significantly higher, in the vicinity of methane macro-seeps compared to non-seep sites. Methylocystis was the most abundant methanotroph group at all sites, but type Ib methanotrophs showed the steepest increase in abundance at seep sites. pmoA gene analysis identified these as clade 501, while 16S rRNA gene analysis identified these as the closely related genus Methylocaldum. Sediment methane oxidation rates and the relative abundance and composition of benthic microbial communities were primarily influenced by methane availability which was in turn related to variation in river discharge. Methane-derived carbon may be an important energy source for the aquatic food webs in reaches affected by natural gas macro-seeps.


Assuntos
Methylococcaceae , Gás Natural , Metano , Methylococcaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Rios
20.
Nat Commun ; 12(1): 2213, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850115

RESUMO

Global oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Redes e Vias Metabólicas/genética , Metagenômica/métodos , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Ecologia , Metagenoma , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA