RESUMO
Glutamatergic neurotransmission is controlled by presynaptic metabotropic glutamate receptors (mGluRs). A subdomain in the intracellular carboxyl-terminal tail of group III mGluRs binds calmodulin and heterotrimeric guanosine triphosphate-binding protein (G protein) betagamma subunits in a mutually exclusive manner. Mutations interfering with calmodulin binding and calmodulin antagonists inhibit G protein-mediated modulation of ionic currents by mGluR 7. Calmodulin antagonists also prevent inhibition of excitatory neurotransmission via presynaptic mGluRs. These results reveal a novel mechanism of presynaptic modulation in which Ca(2+)-calmodulin is required to release G protein betagamma subunits from the C-tail of group III mGluRs in order to mediate glutamatergic autoinhibition.
Assuntos
Calmodulina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ácido Glutâmico/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Células Cultivadas , Dimerização , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Canais de Potássio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Sesterterpenos , Transdução de Sinais , Suínos , Terpenos/farmacologiaRESUMO
Heterotrimeric G proteins couple membrane-bound heptahelical receptors to their cellular effector systems (ion channels or enzymes generating a second messenger). In current pharmacotherapy, the input to G protein-regulated signalling is typically manipulated by targeting the receptor with appropriate agonists or antagonists and, to a lesser extent, by altering second messenger levels, most notably by inhibiting phosphodiesterases that hydrolyse cyclic nucleotides. When stimulated, G proteins undergo a cycle of activation and deactivation in which the alpha-subunits and the betagamma-dimers sequentially expose binding sites for their reaction partners (receptors, guanine nucleotides and effectors, as well as regulatory proteins). These domains can be blocked by inhibitors and this produces effects that cannot be achieved by receptor antagonists. Here, the structural and mechanistic information on G protein antagonists is summarized and an outline of the arguments supporting the hypothesis that G proteins per se are also potential drug targets is provided.
Assuntos
Proteínas de Ligação ao GTP/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Humanos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suramina/farmacologiaRESUMO
UTP stimulates transmitter release and inhibits M-type K(+) channels in rat superior cervical ganglion neurons via G protein-coupled P2Y receptors. To investigate the underlying signaling mechanisms, we treated the neurons with either pertussis or cholera toxin; neither treatment altered the inhibition of M-type K(+) channels by 10 microM UTP. However, pertussis toxin reduced UTP-evoked [(3)H]noradrenaline release by 66%. UTP, UDP, ATP, and ADP caused accumulation of inositol trisphosphate in a pertussis toxin-insensitive manner. Pharmacological inhibition of inositol trisphosphate-induced Ca(2+) release (by inhibition of phospholipase C, of inositol trisphosphate receptors, and of the endoplasmic Ca(2+)-ATPase) prevented the UTP-dependent inhibition of M currents but failed to alter UTP-evoked [(3)H]noradrenaline release. Chelation of intracellular Ca(2+) by 1,2-bis(2-aminophenoxy)ethane-N, N,N',N'-tetraacetic acid also reduced the inhibition of M currents by UTP. In addition, all these manipulations attenuated the inhibition of M currents by bradykinin, but hardly affected the inhibitory action of oxotremorine M. These results demonstrate that UTP inhibits M-type K(+) channels via an inositol trisphosphate-dependent signaling cascade that is also used by bradykinin but not by muscarinic acetylcholine receptors. In contrast, the secretagogue action of UTP is largely independent of this signaling cascade but involves pertussis toxin-sensitive G proteins. Thus, UTP-sensitive P2Y receptors excite sympathetic neurons via at least two different signal transduction mechanisms.
Assuntos
Neurônios/metabolismo , Canais de Potássio/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Uridina Trifosfato/metabolismo , Animais , Bradicinina/farmacologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Quelantes/farmacologia , Toxina da Cólera/farmacologia , Fosfatos de Inositol/antagonistas & inibidores , Fosfatos de Inositol/metabolismo , Agonistas Muscarínicos/farmacologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Oxotremorina/farmacologia , Toxina Pertussis , Bloqueadores dos Canais de Potássio , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/citologia , Fatores de Tempo , Trítio , Fosfolipases Tipo C/metabolismo , Fatores de Virulência de Bordetella/farmacologiaRESUMO
Calmodulin-binding sites on target proteins show considerable variation in primary sequence; hence compounds that block the access of calmodulin to these binding sites may be more selective than compounds that inactivate calmodulin. Suramin and its analogue NF307 inhibit the interaction of calmodulin with the ryanodine receptor. We have investigated whether inhibition of calmodulin binding to target proteins is a general property of these compounds. Suramin inhibited binding of [(125)I]calmodulin to porcine brain membranes and to sarcoplasmic reticulum from skeletal muscle (IC(50)=4.9+/-1.2 microM and 19.9+/-1.8 microM, respectively) and blocked the cross-linking of [(125)I]calmodulin to some, but not all, target proteins in brain membranes by [(125)I]calmodulin. Four calmodulin-binding proteins were purified [ryanodine receptor-1 (RyR1) from rabbit skeletal muscle, neuronal NO synthase (nNOS) from Sf9 cells, G-protein betagamma dimers (Gbetagamma) from porcine brain and a glutathione S-transferase-fusion protein comprising the C-terminal calmodulin-binding domain of the metabotropic glutamate receptor 7A (GST-CmGluR7A) from bacterial lysates]. Three of the proteins employed (Gbetagamma, GST-CmGluR7A and RyR1) display a comparable affinity for calmodulin (in the range of 50-70 nM). Nevertheless, suramin and NF307 only blocked the binding of Gbetagamma and RyR1 to calmodulin-Sepharose. In contrast, the association of GST-CmGluR7A and nNOS was not impaired, whereas excess calmodulin uniformly displaced all proteins from the matrix. Thus suramin and NF307 are prototypes of a new class of calmodulin antagonists that do not interact directly with calmodulin but with calmodulin-recognition sites. In addition, these compounds discriminate among calmodulin-binding motifs.
Assuntos
Encéfalo/efeitos dos fármacos , Calmodulina/metabolismo , Naftalenossulfonatos/farmacologia , Oligopeptídeos/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Suramina/farmacologia , Regulação Alostérica , Motivos de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/metabolismo , Calmodulina/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cromatografia de Afinidade , Reagentes de Ligações Cruzadas/metabolismo , Técnicas In Vitro , Radioisótopos do Iodo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Coelhos , Retículo Sarcoplasmático/metabolismo , SuínosRESUMO
1. Nicotine and its main derivative. cotinine, are reported to have distinct central activities in mammals. In this study, the cotinine receptor was separated by biochemical procedures including radio receptor, affinity-chromatography, SDS-PAGE, and N-terminal sequencing assays. 2. Consistently, the results showed that distinctive cotinine receptors exist in different tissues of mammals. In rat brain, the affinity chromatography and [125I]cotinine receptor essays were used to isolate a 40-kDa protein (p40) with higher affinity for cotinine than alpha-bungarotoxin and nicotine. The N-terminus amino acid sequences of the p40 and its internal tryptic peptides showed no identity to recently described protein sequences, with the exception of homology to the human p205 synovial fluid protein. 3. These results, in agreement with other behavioral studies, are the first molecular evidence for distinctive nicotine and cotinine receptors in mammals.
Assuntos
Encéfalo/metabolismo , Cotinina/farmacocinética , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Cromatografia de Afinidade , Humanos , Radioisótopos do Iodo , Cinética , Masculino , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/química , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/isolamento & purificação , Homologia de Sequência de Aminoácidos , Líquido Sinovial/químicaRESUMO
Suramin analogues uncouple two Gi/Go-coupled receptors, the D2 dopamine receptor in rat striatum and the A1 adenosine receptor in human cerebral cortex, with distinct structure-activity relations. This discrepancy may reflect true differences in the affinity of the analogues for specific receptor/G protein complexes or may be attributable to differences in species or in the tissue source used. We addressed this question by using human embryonic kidney 293 cells that stably express the human A1 and rat A1 receptor and the human D2 receptor. Suramin is 10-fold more potent than its didemethylated analogue NF037 in inhibiting the interaction between G proteins and the rat A1 or human A1 receptor; in contrast, both compounds are equipotent in uncoupling the D2 receptor. These differences are observed regardless of whether (1) inhibition of high affinity agonist binding to the receptors or (2) agonist-stimulated GTPgammaS binding is used as readout, (3) the receptors are allowed to interact with the G protein complement in human embryonic kidney 293 cell membranes, or (4) the receptors are forced to interact with a defined G protein alpha subunit (i.e., after reconstituting pertussis toxin-treated membranes with exogenous rGi alpha-1). The apparent affinity of suramin depends in a linear manner on receptor occupancy, which shows that suramin and the receptor compete for the G protein. Finally, the affinity of the receptors for rGi alpha-1 (human A1 > rat A1 > human D2) is inversely correlated with the potency of suramin in uncoupling ternary complexes formed by these receptors and thus determines the selectivity of the suramin analogues for specific receptor/G protein tandems.
Assuntos
Receptores de Dopamina D2/efeitos dos fármacos , Receptores Purinérgicos P1/efeitos dos fármacos , Suramina/farmacologia , Animais , Células COS , Linhagem Celular , Proteínas de Ligação ao GTP/metabolismo , Humanos , Toxina Pertussis , Ensaio Radioligante , Ratos , Receptores de Dopamina D2/metabolismo , Receptores Purinérgicos P1/metabolismo , Suramina/análogos & derivados , Fatores de Virulência de Bordetella/farmacologiaRESUMO
Signaling by D(2)-dopamine receptors in neurons likely proceeds in the presence of Ca(2+) oscillations. We describe here the biochemical basis for a cross-talk between intracellular Ca(2+) and the D(2) receptor. By activation of calmodulin (CaM), Ca(2+) directly inhibits the D(2) receptor; this conclusion is based on the following observations: (i) The receptor contains a CaM-binding motif in the NH(2)-terminal end of the third loop, a domain involved in activating G(i/o). A peptide fragment encompassing this domain (D2N) bound dansylated CaM in a Ca(2+)-dependent manner (K(D) approximately 0.1 micrometer). (ii) Activation of purified Galpha(i1) by D2N, and D(2) receptor-promoted GTPgammaS (guanosine 5'-(3-O-thio)triphosphate) binding in membranes was suppressed by Ca(2+)/CaM (IC(50) approximately 0.1 micrometer). (iii) If Ca(2+) influx was elicited in D(2) receptor-expressing HEK293 cells, agonist-dependent inhibition of cAMP formation decreased. This effect was not seen with other G(i)-coupled receptors (A(1)-adenosine and Mel(1A)-melatonin receptor). (iv) The D(2) receptor was retained by immobilized CaM and radiolabeled CaM was co-immunoprecipitated with the receptor. Specifically, inhibition by CaM does not result from uncoupling the D(2) receptor from its cognate G protein(s); rather, CaM directly targets the D(2) receptor to block the receptor-operated G protein activation switch.
Assuntos
Cálcio/metabolismo , Calmodulina/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D2/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Membrana Celular/fisiologia , AMP Cíclico/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Estrutura Secundária de Proteína , Receptores de Superfície Celular/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Dopamina D2/química , Receptores de Melatonina , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , TransfecçãoRESUMO
Ca(2+)/calmodulin (Ca(2+)/CaM) and the betagamma subunits of heterotrimeric G-proteins (Gbetagamma) have recently been shown to interact in a mutually exclusive fashion with the intracellular C terminus of the presynaptic metabotropic glutamate receptor 7 (mGluR 7). Here, we further characterized the core CaM and Gbetagamma binding sequences. In contrast to a previous report, we find that the CaM binding motif localized in the N-terminal region of the cytoplasmic tail domain of mGluR 7 is conserved in the related group III mGluRs 4A and 8 and allows these receptors to also bind Ca(2+)/CaM. Mutational analysis of the Ca(2+)/CaM binding motif is consistent with group III receptors containing a conventional CaM binding site formed by an amphipathic alpha-helix. Substitutions adjacent to the core CaM target sequence selectively prevent Gbetagamma binding, suggesting that the CaM-dependent regulation of signal transduction involves determinants that overlap with but are different from those mediating Gbetagamma recruitment. In addition, we present evidence that Gbetagamma uses distinct nonoverlapping interfaces for interaction with the mGluR 7 C-terminal tail and the effector enzyme adenylyl cyclase II, respectively. Although Gbetagamma-mediated signaling is abolished in receptors lacking the core CaM binding sequence, alpha subunit activation, as assayed by agonist-dependent GTPgammaS binding, was not affected. This suggests that Ca(2+)/CaM may alter the mode of group III mGluR signaling from mono- (alpha) to bidirectional (alpha and betagamma) activation of downstream effector cascades.