Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neurobiol Dis ; 134: 104616, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678403

RESUMO

The pontine nucleus locus coeruleus (LC) is the primary source of noradrenergic (NE) projections to the brain and is important for working memory, attention, and cognitive flexibility. Individuals with Down syndrome (DS) develop Alzheimer's disease (AD) with high penetrance and often exhibit working memory deficits coupled with degeneration of LC-NE neurons early in the progression of AD pathology. Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools that allow targeted manipulation of discrete neuronal populations in the brain without the confounds of off-target effects. We utilized male Ts65Dn mice (a mouse model for DS), and male normosomic (NS) controls to examine the effects of inhibitory DREADDs delivered via an AAV vector under translational control of the synthetic PRSx8, dopamine ß hydroxylase (DßH) promoter. This chemogenetic tool allowed LC inhibition upon administration of the inert DREADD ligand, clozapine-N-oxide (CNO). DREADD-mediated LC inhibition impaired performance in a novel object recognition task and reversal learning in a spatial task. DREADD-mediated LC inhibition gave rise to an elevation of α-adrenoreceptors both in NS and in Ts65Dn mice. Further, microglial markers showed that the inhibitory DREADD stimulation led to increased microglial activation in the hippocampus in Ts65Dn but not in NS mice. These findings strongly suggest that LC signaling is important for intact memory and learning in Ts65Dn mice and disruption of these neurons leads to increased inflammation and dysregulation of adrenergic receptors.


Assuntos
Neurônios Adrenérgicos/metabolismo , Síndrome de Down/metabolismo , Locus Cerúleo/metabolismo , Transtornos da Memória/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Drogas Desenhadas , Modelos Animais de Doenças , Síndrome de Down/complicações , Locus Cerúleo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos
2.
J Neurochem ; 148(2): 219-237, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472734

RESUMO

The symptomologies of Alzheimer's disease (AD) develop over decades suggesting modifiable lifestyle factors may contribute to disease pathogenesis. In humans, hyperinsulinemia associated with type 2 diabetes mellitus increases the risk for developing AD and both diseases share similar age-related etiologies including amyloidogenesis. Since we have demonstrated that soluble Aß42 elicits glutamate release, we wanted to understand how diet-induced insulin resistance alters hippocampal glutamate dynamics, which are important for memory formation and consolidation. Eight to twelve-week-old C57BL/6J and AßPP/PS1 mice were placed on either a low-fat diet or high-fat diet (HFD) for 8 months. A HFD led to significant weight increases as well as impaired insulin sensitivity, glucose tolerance, and learning in both C57BL/6J and AßPP/PS1 mice. AßPP/PS1 low-fat diet mice had elevated hippocampal basal as well as stimulus-evoked glutamate release that was further increased with consumption of a HFD. Immunohistochemistry indicated an increase in vesicular glutamate transporter 1 and glial fibrillary acidic protein density in hippocampal subregions corresponding with this elevated extracellular glutamate. While no differences in hippocampal plaque load were observed, the elevated astrogliotic response surrounding the plaques in AßPP/PS1 HFD mice may have been a compensatory mechanism to control plaque accumulation. These data support that AßPP/PS1 mice have chronically elevated extracellular glutamate that is exacerbated by a HFD and that modifiable lifestyle factors such as obesity-induced insulin resistance can contribute to AD pathogenesis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and for *Open Data* because it made the data publicly available. The data can be accessed at https://osf.io/5whvu (figures for data) and https://osf.io/gd5vf (materials and methods). The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14490.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Resistência à Insulina/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
3.
J Neurosci ; 37(4): 742-756, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123012

RESUMO

Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced relapse is correlated with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses on medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) and requires spillover of glutamate from prefrontal cortical afferents. We used a rodent self-administration/reinstatement model of relapse to show that cue-induced t-SP and reinstated cocaine seeking result from glutamate spillover, initiating a metabotropic glutamate receptor 5 (mGluR5)-dependent increase in nitric oxide (NO) production. Pharmacological stimulation of mGluR5 in NAcore recapitulated cue-induced reinstatement in the absence of drug-associated cues. Using NO-sensitive electrodes, mGluR5 activation by glutamate was shown to stimulate NO production that depended on activation of neuronal nitric oxide synthase (nNOS). nNOS is expressed in ∼1% of NAcore neurons. Using a transgene strategy to express and stimulate designer receptors that mimicked mGluR5 signaling through Gq in nNOS interneurons, we recapitulated cue-induced reinstatement in the absence of cues. Conversely, using a transgenic caspase strategy, the intensity of cue-induced reinstatement was correlated with the extent of selective elimination of nNOS interneurons. The induction of t-SP during cued reinstatement depends on activating matrix metalloproteinases (MMPs) and selective chemogenetic stimulation of nNOS interneurons recapitulated MMP activation and t-SP induction (increase in AMPA currents in MSNs). These data demonstrate critical involvement of a sparse population of nNOS-expressing interneurons in cue-induced cocaine seeking, revealing a bottleneck in brain processing of drug-associated cues where therapeutic interventions could be effective in treating drug addiction. SIGNIFICANCE STATEMENT: Relapse to cocaine use in a rat model is associated with transient increases in synaptic strength at prefrontal cortex synapses in the nucleus accumbens. We demonstrate the sequence of events that mediates synaptic potentiation and reinstated cocaine seeking induced by cocaine-conditioned cues. Activation of prefrontal inputs to the accumbens by cues initiates spillover of synaptic glutamate, which stimulates metabotropic glutamate receptor 5 (mGluR5) on a small population of interneurons (∼1%) expressing neuronal nitric oxide synthase. Stimulating these glutamate receptors increases nitric oxide (NO) production, which stimulates matrix metalloprotease-2 (MMP-2) and MMP-9 activity in the extracellular space. Manipulating the interaction between mGluR5, NO production, or MMP-2 and MMP-9 pharmacologically or genetically is sufficient to recapitulate transient synaptic potentiation and reinstate cocaine seeking.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/administração & dosagem , Interneurônios/metabolismo , Óxido Nítrico Sintase Tipo I/biossíntese , Núcleo Accumbens/metabolismo , Animais , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Recidiva , Autoadministração
4.
Alzheimers Dement ; 13(5): 541-549, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27755974

RESUMO

INTRODUCTION: Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) neuropathology and dementia early in life. Blood biomarkers of AD neuropathology would be valuable, as non-AD intellectual disabilities of DS and AD dementia overlap clinically. We hypothesized that elevations of amyloid ß (Aß) peptides and phosphorylated-tau in neuronal exosomes may document preclinical AD. METHODS: AD neuropathogenic proteins Aß1-42, P-T181-tau, and P-S396-tau were quantified by enzyme-linked immunosorbent assays in extracts of neuronal exosomes purified from blood of individuals with DS and age-matched controls. RESULTS: Neuronal exosome levels of Aß1-42, P-T181-tau, and P-S396-tau were significantly elevated in individuals with DS compared with age-matched controls at all ages beginning in childhood. No significant gender differences were observed. DISCUSSION: These early increases in Aß1-42, P-T181-tau, and P-S396-tau in individuals with DS may provide a basis for early intervention as targeted treatments become available.


Assuntos
Doença de Alzheimer/diagnóstico , Síndrome de Down/sangue , Exossomos/metabolismo , Adolescente , Doença de Alzheimer/sangue , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/sangue , Adulto Jovem , Proteínas tau/sangue
5.
J Neurosci ; 35(4): 1343-53, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25632113

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) are novel and powerful tools to investigate discrete neuronal populations in the brain. We have used DREADDs to stimulate degenerating neurons in a Down syndrome (DS) model, Ts65Dn mice. Individuals with DS develop Alzheimer's disease (AD) neuropathology and have elevated risk for dementia starting in their 30s and 40s. Individuals with DS often exhibit working memory deficits coupled with degeneration of the locus coeruleus (LC) norepinephrine (NE) neurons. It is thought that LC degeneration precedes other AD-related neuronal loss, and LC noradrenergic integrity is important for executive function, working memory, and attention. Previous studies have shown that LC-enhancing drugs can slow the progression of AD pathology, including amyloid aggregation, oxidative stress, and inflammation. We have shown that LC degeneration in Ts65Dn mice leads to exaggerated memory loss and neuronal degeneration. We used a DREADD, hM3Dq, administered via adeno-associated virus into the LC under a synthetic promoter, PRSx8, to selectively stimulate LC neurons by exogenous administration of the inert DREADD ligand clozapine-N-oxide. DREADD stimulation of LC-NE enhanced performance in a novel object recognition task and reduced hyperactivity in Ts65Dn mice, without significant behavioral effects in controls. To confirm that the noradrenergic transmitter system was responsible for the enhanced memory function, the NE prodrug l-threo-dihydroxyphenylserine was administered in Ts65Dn and normosomic littermate control mice, and produced similar behavioral results. Thus, NE stimulation may prevent memory loss in Ts65Dn mice, and may hold promise for treatment in individuals with DS and dementia.


Assuntos
Antipsicóticos/uso terapêutico , Clozapina/análogos & derivados , Síndrome de Down/complicações , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Receptor Muscarínico M3/metabolismo , Animais , Contagem de Células , Clozapina/uso terapêutico , Estudos Cross-Over , Drogas Desenhadas , Modelos Animais de Doenças , Síndrome de Down/genética , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Mutantes Neurológicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Doenças Neurodegenerativas/etiologia , Receptor Muscarínico M3/genética , Serina/uso terapêutico
6.
J Neuroinflammation ; 11: 171, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25510908

RESUMO

BACKGROUND: One of the more profound features of systemic lupus erythematosus (SLE) is that females have a 9:1 prevalence of this disease over males. Up to 80% of SLE patients have cognitive defects or affective disorders. The mechanism of CNS injury responsible for cognitive impairment is unknown. We previously showed that ERα deficiency significantly reduced renal disease and increased survival in lupus-prone mice. We hypothesized that ERα deficiency would be similarly protective in the brain, and that ERα may play a role in modulating blood-brain barrier (BBB) integrity and/or neuroinflammation in lupus-prone mice. METHODS: MRL/lpr ERα+/+ and ERαKO mice (n = 46) were ovariectomized, received 17ß-estradiol pellets, and underwent radial arm water maze (WRAM) and novel object recognition (NOR) testing starting at eight weeks of age. Mice were sacrificed and brains were hemisected and processed for either immunohistochemistry, or hippocampus and parietal cortex dissection for Western blotting. RESULTS: MRL/lpr ERαKO mice (n = 21) performed significantly better in WRAM testing than wild-type MRL/lpr mice (n = 25). There was a significant reduction in reference memory errors (P <0.007), working memory errors (P <0.05), and start arm errors (P <0.02) in ERαKO mice. There were significant differences in NOR testing, particularly total exploration time, with ERα deficiency normalizing behavior. No significant differences were seen in markers of tight junction, astrogliosis, or microgliosis in the hippocampus or cortex by Western blot, however, there was a significant reduction in numbers of Iba1+ activated microglia in the hippocampus of ERαKO mice, as evidenced by immunohistochemietry (IHC). CONCLUSION: ERα deficiency provides significant protection against cognitive deficits in MRL/lpr mice as early as eight weeks of age. Additionally, the significant reduction in Iba1+ activated microglia in the MRL/lpr ERαKO mice was consistent with reduced inflammation, and may represent a biological mechanism for the cognitive improvement observed.


Assuntos
Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/prevenção & controle , Receptor alfa de Estrogênio/deficiência , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/prevenção & controle , Animais , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Front Neurol ; 14: 1210103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554394

RESUMO

Background: In pre-clinical animal models of Parkinson's disease (PD), vagus nerve stimulation (VNS) can rescue motor deficits and protect susceptible neuronal populations. Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a non-invasive alternative to traditional invasive cervical VNS. This is the first report summarizing the safety, feasibility, and preliminary efficacy of repeated sessions of taVNS in participants with PD. Objectives: To evaluate the feasibility, safety, and possible efficacy of taVNS for motor and non-motor symptoms in mild to moderate PD. Methods: This is a double-blind, sham controlled RCT (NCT04157621) of taVNS in 30 subjects with mild to moderate PD without cognitive impairment. Participants received 10, 1-h taVNS sessions (25 Hz, 200% of sensory threshold, 500 µs pulse width, 60 s on and 30 s off) over a 2-week period. Primary outcome measures were feasibility and safety of the intervention; secondary outcomes included the MDS-UPDRS, cognitive function and self-reported symptom improvement. Results: taVNS treatment was feasible, however, daily in-office visits were reported as being burdensome for participants. While five participants in the taVNS group and three in the sham group self-reported one or more minor adverse events, no major adverse events occurred. There were no group differences on blood pressure and heart rate throughout the intervention. There were no group differences in MDS-UPDRS scores or self-reported measures. Although global cognitive scores remained stable across groups, there was a reduction in verbal fluency within the taVNS group. Conclusions: taVNS was safe, and well-tolerated in PD participants. Future studies of taVNS for PD should explore at-home stimulation devices and optimize stimulation parameters to reduce variability and maximize engagement of neural targets.

8.
Brain Stimul ; 13(5): 1323-1332, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32629028

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) modifies brain rhythms in the locus coeruleus (LC) via the solitary nucleus. Degeneration of the LC in Parkinson's disease (PD) is an early catalyst of the spreading neurodegenerative process, suggesting that stimulating LC output with VNS has the potential to modify disease progression. We previously showed in a lesion PD model that VNS delivered twice daily reduced neuroinflammation and motor deficits, and attenuated tyrosine hydroxylase (TH)-positive cell loss. OBJECTIVE: The goal of this study was to characterize the differential effects of three clinically-relevant VNS paradigms in a PD lesion model. METHODS: Eleven days after DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, noradrenergic lesion, administered systemically)/6-OHDA (6-hydroxydopamine, dopaminergic lesion, administered intrastriatally) rats were implanted with VNS devices, and received either low-frequency VNS, standard-frequency VNS, or high-frequency microburst VNS. After 10 days of treatment and behavioral assessment, rats were euthanized, right prefrontal cortex (PFC) was dissected for norepinephrine assessment, and the left striatum, bilateral substantia nigra (SN), and LC were sectioned for immunohistochemical detection of catecholamine neurons, α-synuclein, astrocytes, and microglia. RESULTS: At higher VNS frequencies, specifically microburst VNS, greater improvements occurred in motor function, attenuation of TH-positive cell loss in SN and LC, and norepinephrine concentration in the PFC. Additionally, higher VNS frequencies resulted in lower intrasomal α-synuclein accumulation and glial density in the SN. CONCLUSIONS: These data indicate that higher stimulation frequencies provided the greatest attenuation of behavioral and pathological markers in this PD model, indicating therapeutic potential for these VNS paradigms.


Assuntos
Locomoção/fisiologia , Locus Cerúleo/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Substância Negra/metabolismo , Estimulação do Nervo Vago/métodos , Animais , Locomoção/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Long-Evans , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Exp Neurol ; 330: 113315, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302678

RESUMO

Parkinson's disease (PD), a debilitating progressive degenerative movement disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra (SN), afflicts approximately one million people in the U.S., including a significant number of Veterans. Disease characteristics include tremor, rigidity, postural instability, bradykinesia, and at a cellular level, glial cell activation and Lewy body inclusions in DA neurons. The most potent medical/surgical treatments do not ultimately prevent disease progression. Therefore, new therapies must be developed to halt progression of the disease. While the mechanisms of the degenerative process in PD remain elusive, chronic inflammation, a common factor in many neurodegenerative diseases, has been implicated with associated accumulation of toxic aggregated α-synuclein in neurons. Calpain, a calcium-activated cysteine neutral protease, plays a pivotal role in SN and spinal cord degeneration in PD via its role in α-synuclein aggregation, activation/migration of microglia and T cells, and upregulation of inflammatory processes. Here we report an increased expression of a subset of CD4+ T cells in rodent models of PD, including MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mice and DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride]/6-hydroxydopamine rats, which produced higher levels of perforin and granzyme B - typically found in cytotoxic T cells. Importantly, the CD4+ cytotoxic subtype was attenuated following calpain inhibition in MPTP mice, suggesting that calpain and this distinct CD4+ T cell subset may have critical roles in the inflammatory process, disease progression, and neurodegeneration in PD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Calpaína/imunologia , Transtornos Parkinsonianos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Calpaína/metabolismo , Modelos Animais de Doenças , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/patologia , Ratos , Ratos Long-Evans , Subpopulações de Linfócitos T/imunologia
10.
Neurobiol Dis ; 33(3): 459-66, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19110059

RESUMO

Inflammation, phospho-p38 MAPK activation, and a reduction in glial cell line-derived neurotrophic factor (GDNF) occur in Parkinson's disease. Microglial activation in the substantia nigra and a tyrosine hydroxylase deficit in the striatum of 3-month-old GDNF heterozygous (GDNF(+/-)) mice were previously reported and both were exacerbated by a toxic methamphetamine binge. The current study assessed the effects of minocycline on these methamphetamine-induced effects. Minocycline (45 mg/kg, i.p.x 14 days post-methamphetamine or saline injections) reduced microglial activation and phospho-p38 MAPK in the substantia nigra of saline-treated GDNF(+/-) mice and in methamphetamine-treated wildtype and GDNF(+/-) mice. Although minocycline increased tyrosine hydroxylase-immunoreactivity in GDNF(+/-) mice, it did not attenuate the methamphetamine-induced reduction of tyrosine hydroxylase. The results suggest that neuroinflammation is deleterious to the dopamine system of GDNF(+/-) mice but is not the primary cause of methamphetamine-induced damage to the dopamine system in either GDNF(+/-) or wildtype mice.


Assuntos
Corpo Estriado/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Metanfetamina/toxicidade , Minociclina/farmacologia , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Análise de Variância , Animais , Temperatura Corporal/efeitos dos fármacos , Contagem de Células , Corpo Estriado/enzimologia , Heterozigoto , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/fisiologia , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Fotomicrografia , Substância Negra/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Behav Brain Res ; 373: 112080, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31301412

RESUMO

Vagus nerve stimulation (VNS) is being explored as a potential therapeutic for Parkinson's disease (PD). VNS is less invasive than other surgical treatments and has beneficial effects on behavior and brain pathology. It has been suggested that VNS exerts these effects by increasing brain-derived neurotrophic factor (BDNF) to enhance pro-survival mechanisms of its receptor, tropomyosin receptor kinase-B (TrkB). We have previously shown that striatal BDNF is increased after VNS in a lesion model of PD. By chronically administering ANA-12, a TrkB-specific antagonist, we aimed to determine TrkB's role in beneficial VNS effects for a PD model. In this study, we administered a noradrenergic neurotoxin, DSP-4, intraperitoneally and one week later administered a bilateral intrastriatal dopaminergic neurotoxin, 6-OHDA. At this time, the left vagus nerve was cuffed for stimulation. Eleven days later, rats received VNS twice per day for ten days, with daily locomotor assessment. Daily ANA-12 injections were given one hour prior to the afternoon stimulation and concurrent locomotor session. Following the final VNS session, rats were euthanized, and left striatum, bilateral substantia nigra and locus coeruleus were sectioned for immunohistochemical detection of neurons, α-synuclein, astrocytes, and microglia. While ANA-12 did not avert behavioral improvements of VNS, and only partially prevented VNS-induced attenuation of neuronal loss in the locus coeruleus, it did stop neuronal and anti-inflammatory effects of VNS in the nigrostriatal system, indicating a role for TrkB in mediating VNS efficacy. However, our data also suggest that BDNF-TrkB is not the sole mechanism of action for VNS in PD.


Assuntos
Doença de Parkinson/metabolismo , Receptor trkB/metabolismo , Nervo Vago/metabolismo , Animais , Azepinas/farmacologia , Benzamidas/farmacologia , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/farmacologia , Locus Cerúleo/metabolismo , Masculino , Neostriado/metabolismo , Norepinefrina/farmacologia , Oxidopamina/farmacologia , Doença de Parkinson/patologia , Ratos , Ratos Long-Evans , Receptor trkB/fisiologia , Substância Negra/metabolismo , Estimulação do Nervo Vago/métodos
12.
J Neurosci ; 27(33): 8816-25, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699663

RESUMO

Methamphetamine abuse in young adults has long-term deleterious effects on brain function that are associated with damage to monoaminergic neurons. Administration of glial cell line-derived neurotrophic factor (GDNF) protects dopamine neurons from the toxic effects of methamphetamine in animal models. Therefore, we hypothesized that a partial GDNF gene deletion would increase the susceptibility of mice to methamphetamine neurotoxicity during young adulthood and possibly increase age-related deterioration of behavior and dopamine function. Two weeks after a methamphetamine binge (4 x 10 mg/kg, i.p., at 2 h intervals), GDNF(+/-) mice had a significantly greater reduction of tyrosine hydroxylase immunoreactivity in the medial striatum, a proportionally greater depletion of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the striatum, and a greater increase in activated microglia in the substantia nigra than wild-type mice. At 12 months of age, methamphetamine-treated GDNF(+/-) mice exhibited less motor activity and lower levels of tyrosine hydroxylase-immunoreactivity, dopamine, DOPAC, and serotonin than wild-type mice. Greater striatal dopamine transporter activity in GDNF(+/-) mice may underlie their differential response to methamphetamine. These data suggest the possibility that methamphetamine use in young adults, when combined with lower levels of GDNF throughout life, may precipitate the appearance of parkinsonian-like behaviors during aging.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Metanfetamina/farmacologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Temperatura Corporal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/sangue , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Metanfetamina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Eur J Neurosci ; 28(8): 1557-68, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18973577

RESUMO

Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)alpha-1 (GFRalpha-1(+/-)), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRalpha-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRalpha-1(+/-) mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRalpha-1(+/-) mice. DA in the striatum was reduced in the GFRalpha-1(+/-) mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRalpha-1(+/-) mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRalpha-1(+/-) mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRalpha-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRalpha-1 can contribute to the degenerative changes observed in this system during the aging process.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Substância Negra/metabolismo , Envelhecimento/genética , Animais , Corpo Estriado/citologia , Agonistas de Dopamina/farmacologia , Heterozigoto , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Substância Negra/citologia
14.
Br J Pharmacol ; 175(2): 348-358, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29057453

RESUMO

BACKGROUND AND PURPOSE: Parkinson's disease is characterized by progressive decline in motor function due to degeneration of nigrostriatal dopaminergic neurons, as well as other deficits including cognitive impairment and behavioural abnormalities. Mitochondrial dysfunction, leading to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity and oxidative stress, is implicated in the pathophysiology of Parkinson's disease. Using the 5-HT1F receptor agonist LY344864, a known inducer of mitochondrial biogenesis (MB), we investigated the therapeutic efficacy of stimulating MB on dopaminergic neuron loss in a mouse model of Parkinson's disease. EXPERIMENTAL APPROACH: Male C57BL/6 mice underwent bilateral intrastriatal 6-hydroxydopamine or saline injections and daily treatment with 2 mg·kg-1 LY344864 or vehicle for 14 days beginning 7 days post-lesion. Tyrosine hydroxylase immunoreactivity (TH-ir) and MB were assessed in the brains of all groups following treatment, and locomotor activity was evaluated prior to lesioning, 7 days post-lesion and after treatment. KEY RESULTS: Increased mitochondrial DNA content and nuclear- and mitochondrial-encoded mRNA and protein expression was observed in specific brain regions of LY344864-treated naïve and lesioned mice, indicating augmented MB. LY344864 attenuated TH-ir loss in the striatum and substantia nigra compared to vehicle-treated lesioned animals. LY344864 treatment also increased locomotor activity in 6-hydroxydopamine lesioned mice, while vehicle treatment had no effect. CONCLUSIONS AND IMPLICATIONS: These data revealed that LY344864-induced MB attenuates dopaminergic neuron loss and improves behavioural endpoints in this model. We suggest that stimulating MB may be beneficial for the treatment of Parkinson's disease and that the 5-HT1F receptor may be an effective therapeutic target.


Assuntos
Carbazóis/farmacologia , Carbazóis/uso terapêutico , Fluorbenzenos/farmacologia , Fluorbenzenos/uso terapêutico , Mitocôndrias/fisiologia , Biogênese de Organelas , Doença de Parkinson/tratamento farmacológico , Receptores de Serotonina/fisiologia , Animais , Corpo Estriado/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Oxidopamina , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Receptor 5-HT1F de Serotonina
15.
Brain Res ; 1133(1): 10-9, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17184739

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is potent for survival and promotion of nerve fibers from midbrain dopamine neurons. It is also known to exert different effects on specific subpopulations of dopamine neurons. In organotypic tissue cultures, dopamine neurons form two diverse nerve fiber growth patterns, targeting the striatum differently. The aim of this study was to investigate the effect of GDNF on the formation of dopamine nerve fibers. Organotypic tissue cultures of ventral mesencephalon of gdnf gene-deleted mice were studied. The results revealed that dopamine neurons survive in the absence of GDNF. Tyrosine hydroxylase immunoreactivity demonstrated, in gdnf knockout and wildtype cultures, nerve fiber formation with two separate morphologies occurring either in the absence or the presence of astrocytes. The outgrowth that occurred in the absence of astrocytes was unaffected by gdnf deletion, whereas nerve fibers guided by the presence of astrocytes were affected in that they reached significantly shorter distances from the gdnf gene-deleted tissue slice, compared to those measured in wildtype cultures. Treatment with GDNF reversed this effect and increased nerve fiber density independent of genotype. Furthermore, migration of astrocytes reached significantly shorter distances from the tissue slice in GDNF knockout compared to wildtype cultures. Exogenous GDNF increased astrocytic migration in gdnf gene-deleted tissue cultures, comparable to lengths observed in wildtype tissue cultures. In conclusion, cultured midbrain dopamine neurons survive in the absence of GDNF, and the addition of GDNF improved dopamine nerve fiber formation - possibly as an indirect effect of astrocytic stimulation.


Assuntos
Axônios/metabolismo , Dopamina/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Mesencéfalo/embriologia , Animais , Astrócitos/metabolismo , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Cones de Crescimento/metabolismo , Imuno-Histoquímica , Masculino , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Substância Negra/citologia , Substância Negra/embriologia , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Brain Stimul ; 10(6): 1045-1054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28918943

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive, neurodegenerative disorder with no disease-modifying therapies, and symptomatic treatments are often limited by debilitating side effects. In PD, locus coeruleus noradrenergic (LC-NE) neurons degenerate prior to substantia nigra dopaminergic (SN-DA) neurons. Vagus nerve stimulation (VNS) activates LC neurons, and decreases pro-inflammatory markers, allowing improvement of LC targets, making it a potential PD therapeutic. OBJECTIVE: To assess therapeutic potential of VNS in a PD model. METHODS: To mimic the progression of PD degeneration, rats received a systemic injection of noradrenergic neurotoxin DSP-4, followed one week later by bilateral intrastriatal injection of dopaminergic neurotoxin 6-hydroxydopamine. At this time, a subset of rats also had vagus cuffs implanted. After eleven days, rats received a precise VNS regimen twice a day for ten days, and locomotion was measured during each afternoon session. Immediately following final stimulation, rats were euthanized, and left dorsal striatum, bilateral SN and LC were sectioned for immunohistochemical detection of monoaminergic neurons (tyrosine hydroxylase, TH), α-synuclein, astrocytes (GFAP) and microglia (Iba-1). RESULTS: VNS significantly increased locomotion of lesioned rats. VNS also resulted in increased expression of TH in striatum, SN, and LC; decreased SN α-synuclein expression; and decreased expression of glial markers in the SN and LC of lesioned rats. Additionally, saline-treated rats after VNS, had higher LC TH and lower SN Iba-1. CONCLUSIONS: Our findings of increased locomotion, beneficial effects on LC-NE and SN-DA neurons, decreased α-synuclein density in SN TH-positive neurons, and neuroinflammation suggest VNS has potential as a novel PD therapeutic.


Assuntos
Neurônios Adrenérgicos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Locomoção/fisiologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Estimulação do Nervo Vago/métodos , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Benzilaminas/toxicidade , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Norepinefrina/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Distribuição Aleatória , Ratos , Ratos Long-Evans , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
17.
J Gerontol A Biol Sci Med Sci ; 72(3): 329-337, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208894

RESUMO

Growth hormone receptor knockout (GHR-KO) mice are long lived with improved health span, making this an excellent model system for understanding biochemical mechanisms important to cognitive reserve. The purpose of the present study was to elucidate differences in cognition and glutamatergic dynamics between aged (20- to 24-month-old) GHR-KO and littermate controls. Glutamate plays a critical role in hippocampal learning and memory and is implicated in several neurodegenerative disorders, including Alzheimer's disease. Spatial learning and memory were assessed using the Morris water maze (MWM), whereas independent dentate gyrus (DG), CA3, and CA1 basal glutamate, release, and uptake measurements were conducted in isoflurane anesthetized mice utilizing an enzyme-based microelectrode array (MEA) coupled with constant potential amperometry. These MEAs have high temporal and low spatial resolution while causing minimal damage to the surrounding parenchyma. Littermate controls performed worse on the memory portion of the MWM behavioral task and had elevated DG, CA3, and CA1 basal glutamate and stimulus-evoked release compared with age-matched GHR-KO mice. CA3 basal glutamate negatively correlated with MWM performance. These results support glutamatergic regulation in learning and memory and may have implications for therapeutic targets to delay the onset of, or reduce cognitive decline, in Alzheimer's disease.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Ácido Glutâmico/fisiologia , Receptores da Somatotropina/fisiologia , Transdução de Sinais/fisiologia , Animais , Feminino , Memória , Camundongos , Camundongos Knockout , Modelos Animais , Aprendizagem Espacial
18.
Brain Res ; 1651: 88-94, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27659966

RESUMO

Mitochondrial dysfunction has been implicated in the degeneration of dopamine (DA) neurons in Parkinson's disease (PD). In addition, animal models of PD utilizing neurotoxins, such as 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, have shown that these toxins disrupt mitochondrial respiration by targeting complex I of the electron transport chain, thereby impairing DA neurons in these models. A MitoPark mouse model was created to mimic the mitochondrial dysfunction observed in the DA system of PD patients. These mice display the same phenotypic characteristics as PD, including accelerated decline in motor function and DAergic systems with age. Previously, these mice have responded to L-Dopa treatment and develop L-Dopa induced dyskinesia (LID) as they age. A potential mechanism involved in the formation of LID is greater glutamate release into the dorsal striatum as a result of altered basal ganglia neurocircuitry due to reduced nigrostriatal DA neurotransmission. Therefore, the focus of this study was to assess various indicators of glutamate neurotransmission in the dorsal striatum of MitoPark mice at an age in which nigrostriatal DA has degenerated. At 28 weeks of age, MitoPark mice had, upon KCl stimulation, greater glutamate release in the dorsal striatum compared to control mice. In addition, uptake kinetics were slower in MitoPark mice. These findings were coupled with reduced expression of the glutamate re-uptake transporter, GLT-1, thus providing an environment suitable for glutamate excitotoxic events, leading to altered physiological function in these mice.


Assuntos
Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Transtornos Parkinsonianos/metabolismo , Transmissão Sináptica/fisiologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Dopamina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Cinética , Masculino , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurotransmissores/farmacologia , Transtornos Parkinsonianos/patologia , Cloreto de Potássio/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Transmissão Sináptica/efeitos dos fármacos
19.
Brain Res ; 1631: 34-45, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26607251

RESUMO

The anti-Parkinsonian drug rasagiline is a selective, irreversible inhibitor of monoamine oxidase and is used in the treatment of Parkinson׳s disease (PD). Its postulated neuroprotective effects may be attributed to MAO inhibition, or to its propargylamine moiety. The major metabolite of rasagiline, aminoindan, has shown promising neuroprotective properties in vitro but there is a paucity of studies investigating in vivo effects of this compound. Therefore, we examined neuroprotective effects of rasagiline and its metabolite aminoindan in a double lesion model of PD. Male Fisher 344 rats received i.p. injections of the noradrenergic neurotoxin DSP-4 and intra-striatal stereotaxic microinjections of the dopamine neurotoxin 6-OHDA. Saline, rasagiline or aminoindan (3mg/kg/day s.c.) were delivered via Alzet minipumps for 4 weeks. Rats were then tested for spontaneous locomotion and a novel object recognition task. Following behavioral testing, brain tissue was processed for ELISA measurements of growth factors and immunohistochemistry. Double-lesioned rats treated with rasagiline or aminoindan had reduced behavioral deficits, both in motor and cognitive tasks compared to saline-treated double-lesioned rats. BDNF levels were significantly increased in the hippocampus and striatum of the rasagiline- and aminoindan-lesioned groups compared to the saline-treated lesioned group. Double-lesioned rats treated with rasagiline or aminoindan exhibited a sparing in the mitochondrial marker Hsp60, suggesting mitochondrial involvement in neuroprotection. Tyrosine hydroxylase (TH) immunohistochemistry revealed a sparing of TH-immunoreactive terminals in double-lesioned rats treated with rasagiline or aminoindan in the striatum, hippocampus, and substantia nigra. These data provide evidence of neuroprotection by aminoindan and rasagiline via their ability to enhance BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Indanos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Benzilaminas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Chaperonina 60/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Norepinefrina/metabolismo , Ratos , Ratos Endogâmicos F344
20.
Biol Psychiatry ; 80(3): 207-15, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26946381

RESUMO

BACKGROUND: As a more detailed picture of nervous system function emerges, diversity of astrocyte function becomes more widely appreciated. While it has been shown that cocaine experience impairs astroglial glutamate uptake and release in the nucleus accumbens (NAc), few studies have explored effects of self-administration on the structure and physiology of astrocytes. We investigated the effects of extinction from daily cocaine self-administration on astrocyte characteristics including glial fibrillary acidic protein (GFAP) expression, surface area, volume, and colocalization with a synaptic marker. METHODS: Cocaine or saline self-administration and extinction were paired with GFAP Westerns, immunohistochemistry, and fluorescent imaging of NAc core astrocytes (30 saline-administering and 36 cocaine-administering male Sprague Dawley rats were employed). Imaging was performed using a membrane-tagged lymphocyte protein tyrosine kinase-green fluorescent protein (Lck-GFP) driven by the GFAP promoter, coupled with synapsin I immunohistochemistry. RESULTS: GFAP expression was significantly reduced in the NAc core following cocaine self-administration and extinction. Similarly, we observed an overall smaller surface area and volume of astrocytes, as well as reduced colocalization with synapsin I, in cocaine-administering animals. Cocaine-mediated reductions in synaptic contact were reversed by the ß-lactam antibiotic ceftriaxone. CONCLUSIONS: Multiple lines of investigation indicate that NAc core astrocytes exist in a hyporeactive state following cocaine self-administration and extinction. Decreased association with synaptic elements may be particularly meaningful, as cessation of chronic cocaine use is associated with changes in synaptic strength and resistance to the induction of synaptic plasticity. We hypothesize that the reduced synaptic colocalization of astrocytes represents an important maladaptive cellular response to cocaine and the mechanisms underlying relapse vulnerability.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Cocaína/administração & dosagem , Cocaína/farmacologia , Extinção Psicológica , Proteína Glial Fibrilar Ácida/deficiência , Núcleo Accumbens/patologia , Animais , Animais Geneticamente Modificados , Astrócitos/metabolismo , Ceftriaxona/farmacologia , Contagem de Células , Proteína Glial Fibrilar Ácida/biossíntese , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Autoadministração , Sinapses/efeitos dos fármacos , Sinapsinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA