Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123792, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518974

RESUMO

The production and consumption of disposable face masks (DFMs) increased intensely during the COVID-19 pandemic, leading to a high amount of them being found in the terrestrial and aquatic environment. The main goal of this research study is to conduct a comparative evaluation of the water-leachability of microplastics (MPs) and chemical additives from various types of disposable surgical/medical face masks (MM DFMs) and filtering face pieces (FFPs). Fourier-Transform Infrared Spectroscopy was used for MPs analysis. Liquid Chromatography/High Resolution Mass Spectrometry was used to analyse analytes presented in the water-leachates of DFMs. FFPs released 3-4 times more microplastic particles compared to MM DFMs. The release of MPs into water from all tested DFMs without mechanical stress suggests potential MP contamination originating from the DFM production process. Our study for the first time identified bisphenol B (0.25-0.42 µg/L) and 1,4-bis(2-ethylhexyl) sulfosuccinate (163.9-115.0 µg/L) as leachables from MM DFMs. MPs in the water-leachates vary in size, with predominant particles <100 µm, and the release order from DFMs is MMIIR > MMII > FFP3>FFP2>MMI. The main type of microplastics identified in the water leachates of the investigated face masks was polypropylene, accounting for 93-97% for MM DFMs and 82-83% for FFPs. Other polymers such as polyethylene, polycarbonate, polyester/polyethylene terephthalate, polyamide/Nylon, polyvinylchloride, and ethylene-propylene copolymer were also identified, but in smaller amounts. FFPs released a wider variety and a higher percentage (17-18%) of other polymers compared to MM DFMs (3-7%). Fragments and fibres were identified in all water-leachate samples, and fragments, particularly debris of polypropylene fibres, were the most common MP morphotype. The findings in this study are important in contributing additional data to develop science-based policy recommendations on the health and environmental impacts of MPs and associated chemical additives originated from DFMs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Máscaras , Pandemias , Polipropilenos , Nylons , Água , Monitoramento Ambiental
2.
Sci Total Environ ; 690: 573-583, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301498

RESUMO

Biowastes, such as meat and bone meal (MBM), and poultry litter (PL), are used as energy sources for industrial combustion in the UK. However, the biomass ashes remaining after combustion, which contain nutrients such as phosphorus, are landfilled rather than utilised. To promote their utilisation, biomass ashes from industries were characterised in terms of their elemental and mineral compositions, phosphorus extractability, and pH-dependent leachability. These ashes were highly alkaline (pH as high as 13), and rich in calcium and phosphorus. The P bio-availabilities in the ash evaluated by Olsen's extraction were low. Hydroxyapatite and potassium sodium calcium phosphate were identified by X-ray powder diffraction (XRD) as the major phases in the MBM and PL ashes, respectively. The leaching of P, Ca, and many other elements was pH dependent, with considerable increase in leaching below about pH 6. P recovery by acid dissolution (e.g., with H2SO4) seems feasible and promising; the optimized acid consumption for ~90% P recovery could be as low as 3.2-5.3 mol H+/mol P.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA