Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Biochem Biophys Res Commun ; 642: 83-89, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36566566

RESUMO

Extracellular aggregates of wild-type human transthyretin are associated with heart diseases such as wild-type transthyretin (TTR)-derived amyloidosis (ATTR-wt). Due to their strategic location, cardiac fibroblasts act as sentinel cells that sense injury and activate the inflammasome. No studies of the effects of TTR amyloid aggregation on the secretion of inflammatory factors by primary human cardiac fibroblasts (hCFs) have been reported yet. The intracellular internalization of TTR aggregates, which correspond to the early stage of ATTR-wt, were determined using immunofluorescence and Western blotting of cell lysates. A further objective of this study was to analyze the secretion of inflammatory factors by hCFs after analysis of TTR amyloid aggregation using X-MAP® Luminex Assay techniques. We show that TTR aggregates are internalized in hCFs and induce the secretion of both Brain Natriuretic Peptide (BNP) and N-terminal pro B-type Natriuretic Peptide(NT-proBNP). Also, pro-inflammatory mediators such as interleukin-6 (IL-6) and IL-8 are secreted without significant changes in the levels of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). In conclusion, these findings suggest that IL-6 and IL-8 play important roles in the development of ATTR-wt, and indicate that IL-6 in particular could be a potentially important therapeutic target in patients with ATTR-wt.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Humanos , Interleucina-6 , Interleucina-8 , Neuropatias Amiloides Familiares/tratamento farmacológico , Amiloide , Fibroblastos
2.
Pflugers Arch ; 472(12): 1719-1732, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047172

RESUMO

Cardiac fibroblasts play an important role in cardiac matrix turnover and are involved in cardiac fibrosis development. Ca2+ is a driving belt in this phenomenon. This study evaluates the functional expression and contribution of the Ca2+-activated channel TRPM4 in atrial fibroblast phenotype. Molecular and electrophysiological investigations were conducted in human atrial fibroblasts in primary culture and in atrial fibroblasts obtained from wild-type and transgenic mice with disrupted Trpm4 gene (Trpm4-/-). A typical TRPM4 current was recorded on human cells (equal selectivity for Na+ and K+, activation by internal Ca2+, voltage sensitivity, conductance of 23.2 pS, inhibition by 9-phenanthrol (IC50 = 6.1 × 10-6 mol L-1)). Its detection rate was 13% on patches at days 2-4 in culture but raised to 100% on patches at day 28. By the same time, a cell growth was observed. This growth was smaller when cells were maintained in the presence of 9-phenanthrol. Similar cell growth was measured on wild-type mice atrial fibroblasts during culture. However, this growth was minimized on Trpm4-/- mice fibroblasts compared to control animals. In addition, the expression of alpha smooth muscle actin increased during culture of atrial fibroblasts from wild-type mice. This was not observed in Trpm4-/- mice fibroblasts. It is concluded that TRPM4 participates in fibroblast growth and could thus be involved in cardiac fibrosis.


Assuntos
Fibrose Endomiocárdica/metabolismo , Miofibroblastos/metabolismo , Canais de Cátion TRPM/metabolismo , Potenciais de Ação , Idoso , Animais , Cálcio/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Miocárdio/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/fisiologia , Fenantrenos
3.
Cell Mol Biol Lett ; 25(1): 50, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33292162

RESUMO

BACKGROUND: Human cardiac stem cells expressing the W8B2 marker (W8B2+ CSCs) were recently identified and proposed as a new model of multipotent CSCs capable of differentiating into smooth muscle cells, endothelial cells and immature myocytes. Nevertheless, no characterization of ion channel or calcium activity during the differentiation of these stem cells has been reported. METHODS: The objectives of this study were thus to analyze (using the TaqMan Low-Density Array technique) the gene profile of W8B2+ CSCs pertaining to the regulation of ion channels, transporters and other players involved in the calcium homeostasis of these cells. We also analyzed spontaneous calcium activity (via the GCaMP calcium probe) during the in vitro differentiation of W8B2+ CSCs into cardiac myocytes. RESULTS: Our results show an entirely different electrophysiological genomic profile between W8B2+ CSCs before and after differentiation. Some specific nodal genes, such as Tbx3, HCN, ICaT, L, KV, and NCX, are overexpressed after this differentiation. In addition, we reveal spontaneous calcium activity or a calcium clock whose kinetics change during the differentiation process. A pharmacological study carried out on differentiated W8B2+ CSCs showed that the NCX exchanger and IP3 stores play a fundamental role in the generation of these calcium oscillations. CONCLUSIONS: Taken together, the present results provide important information on ion channel expression and intrinsic calcium dynamics during the differentiation process of stem cells expressing the W8B2 marker.


Assuntos
Antígenos de Superfície/metabolismo , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Canais Iônicos/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo , Idoso , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Expressão Gênica/fisiologia , Humanos , Masculino , Células-Tronco Multipotentes/metabolismo , Miócitos de Músculo Liso/metabolismo
4.
Stem Cells ; 36(5): 761-774, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29359518

RESUMO

The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774.


Assuntos
Encéfalo/citologia , Cálcio/metabolismo , Autorrenovação Celular/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Adultas/metabolismo , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proliferação de Células/fisiologia , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Neurônios/metabolismo
5.
J Cell Physiol ; 232(4): 725-730, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27685887

RESUMO

Cardiac fibroblasts are commonly known as supporting cells of the cardiac network and exert many essential functions that are fundamental for normal cardiac growth as well as for cardiac remodeling process during pathological conditions. This review focuses on the roles of cardiac fibroblasts in the formation and regulation of the extracellular matrix components, and in maintaining structural, biochemical and mechanical properties of the heart. Additionally, though considered as non-excitable cells, we review the functional expression in cardiac fibroblasts of a wide variety of transmembrane ion channels which activity may contribute to key regulation of cardiac physiological processes. All together, cardiac fibroblasts which actively participate to fundamental regulation of cardiac physiology and physiopathology processes may represent pertinent targets for pharmacological approaches of cardiac diseases and lead to new tracks of therapeutic strategies. J. Cell. Physiol. 232: 725-730, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Fibroblastos/metabolismo , Miocárdio/citologia , Transdução de Sinais , Animais , Forma Celular , Fibroblastos/citologia , Fibrose , Humanos , Mecanotransdução Celular
6.
Biochim Biophys Acta ; 1850(6): 1215-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25721215

RESUMO

BACKGROUND: Like many voltage-gated sodium channels, the cardiac isoform Nav1.5 is well known as a glycoprotein which necessarily undergoes N-glycosylation processing during its transit to the plasma membrane. In some cardiac disorders, especially the Brugada syndrome (BrS), mutations in Nav1.5 encoding gene lead to intracellular retention and consequently trafficking defect of these proteins. We used two BrS mutants as tools to clarify both Nav1.5 glycosylation states and associated secretory behaviors. METHODS: Patch-clamp recordings and surface biotinylation assays of HEK293T cells expressing wild-type (WT) and/or mutant Nav1.5 proteins were performed to assess the impact of mutant co-expression on the membrane activity and localization of WT channels. Enzymatic deglycosylation assays and brefeldin A (BFA) treatments were also employed to further characterize recombinant and native Nav1.5 maturation. RESULTS: The present data demonstrate that Nav1.5 channels mainly exist as two differentially glycosylated forms. We reveal that dominant negative effects induced by BrS mutants upon WT channel current result from the abnormal surface expression of the fully-glycosylated forms exclusively. Furthermore, we show that core-glycosylated channels can be found at the surface membrane of BFA-treated or untreated cells, but obviously without generating any sodium current. CONCLUSIONS: Our findings provide evidence that native and recombinant Nav1.5 subunits are expressed as two distinct matured forms. Fully-glycosylated state of Nav1.5 seems to determine its functionality whereas core-glycosylated forms might be transported to the plasma membrane through an unconventional Golgi-independent secretory route. GENERAL SIGNIFICANCE: This work highlights that N-linked glycosylation processing would be critical for Nav1.5 membrane trafficking and function.


Assuntos
Membrana Celular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Processamento de Proteína Pós-Traducional , Brefeldina A/farmacologia , Glicosilação , Células HEK293 , Humanos , Potenciais da Membrana , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo , Transporte Proteico/efeitos dos fármacos , Transfecção
7.
Ann Noninvasive Electrocardiol ; 20(1): 28-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24943134

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) generates missplicing of the SCN5A gene, encoding the cardiac sodium channel (Nav 1.5). Brugada syndrome, which partly results from Nav 1.5 dysfunction and causes increased VF occurrence, can be unmasked by ajmaline. We aimed to investigate the response to ajmaline challenge in DM1 patients and its potential impact on their sudden cardiac death risk stratification. METHODS: Among 36 adult DM1 patients referred to our institution, electrophysiological study and ajmaline challenge were performed in 12 patients fulfilling the following criteria: (1) PR interval >200 ms or QRS duration >100 ms; (2) absence of complete left bundle branch block; (3) absence of permanent ventricular pacing; (4) absence of implantable cardioverter-defibrillator (ICD); (5) preserved left-ventricular ejection fraction >50%; and (6) absence of severe muscular impairment. Of note, DM1 patients with ajmaline-induced Brugada pattern (BrP) were screened for SCN5A. RESULTS: In all the 12 patients studied, the HV interval was <70 ms. A BrP was unmasked in three patients but none carried an SCN5A mutation. Ajmaline-induced sustained ventricular tachycardia occurred in one patient with BrP, who finally received an ICD. The other patients did not present any cardiac event during the entire follow-up (15 ± 4 months). CONCLUSION: Our study is the first to describe a high prevalence of ajmaline-induced BrP in DM1 patients. The indications, the safety, and the implications of ajmaline challenge in this particular setting need to be determined by larger prospective studies.


Assuntos
Ajmalina/administração & dosagem , Antiarrítmicos/administração & dosagem , Síndrome de Brugada/complicações , Síndrome de Brugada/diagnóstico , Eletrocardiografia , Distrofia Miotônica/complicações , Adolescente , Adulto , Idoso , Síndrome de Brugada/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
8.
J Mol Cell Cardiol ; 68: 12-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412532

RESUMO

Cardiac fibroblasts are an integral part of the myocardial tissue and contribute to its remodelling. This study characterises for the first time the calcium-dependent chloride channels (CaCC) in the plasma membrane of primary human atrial cardiac fibroblasts by means of the iodide efflux and the patch clamp methods. The calcium ionophore A23187 and Angiotensin II (Ang II) activate a chloride conductance in cardiac fibroblasts that shares pharmacological similarities with calcium-dependent chloride channels. This chloride conductance is depressed by RNAi-mediated selective Anoctamine 1 (ANO1) but not by Anoctamine 2 (ANO2) which has been revealed as CaCC and is inhibited by the selective ANO1 inhibitor, T16inh-A01. The effect of Ang II on anion efflux is mediated through AT1 receptors (with an EC50 = 13.8 ± 1.3 nM). The decrease of anion efflux by calphostin C and bisindolylmaleimide I (BIM I) suggests that chloride conductance activation is dependent on PKC. We conclude that ANO1 contributes to CaCC current in human cardiac fibroblasts and that this is regulated by Ang II acting via the AT1 receptor pathway.


Assuntos
Angiotensina II/fisiologia , Sinalização do Cálcio , Canais de Cloreto/fisiologia , Fibroblastos/metabolismo , Proteínas de Neoplasias/fisiologia , Idoso , Anoctamina-1 , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Cloretos/metabolismo , Feminino , Átrios do Coração/citologia , Humanos , Cinética , Masculino , Receptor Tipo 1 de Angiotensina/metabolismo
9.
J Gen Physiol ; 156(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557788

RESUMO

DSC1, a Drosophila channel with sequence similarity to the voltage-gated sodium channel (NaV), was identified over 20 years ago. This channel was suspected to function as a non-specific cation channel with the ability to facilitate the permeation of calcium ions (Ca2+). A honeybee channel homologous to DSC1 was recently cloned and shown to exhibit strict selectivity for Ca2+, while excluding sodium ions (Na+), thus defining a new family of Ca2+ channels, known as CaV4. In this study, we characterize CaV4, showing that it exhibits an unprecedented type of inactivation, which depends on both an IFM motif and on the permeating divalent cation, like NaV and CaV1 channels, respectively. CaV4 displays a specific pharmacology with an unusual response to the alkaloid veratrine. It also possesses an inactivation mechanism that uses the same structural domains as NaV but permeates Ca2+ ions instead. This distinctive feature may provide valuable insights into how voltage- and calcium-dependent modulation of voltage-gated Ca2+ and Na+ channels occur under conditions involving local changes in intracellular calcium concentrations. Our study underscores the unique profile of CaV4 and defines this channel as a novel class of voltage-gated Ca2+ channels.


Assuntos
Cálcio , Canais de Sódio Disparados por Voltagem , Abelhas , Animais , Canais de Sódio Disparados por Voltagem/química , Íons
10.
J Physiol ; 590(17): 4307-19, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22802584

RESUMO

Fibroblasts play a major role in heart physiology. They are at the origin of the extracellular matrix renewal and production of various paracrine and autocrine factors. In pathological conditions, fibroblasts proliferate, migrate and differentiate into myofibroblasts leading to cardiac fibrosis. This differentiated status is associated with changes in expression profile leading to neo-expression of proteins such as ionic channels. The present study investigates further electrophysiological changes associated with fibroblast differentiation focusing on the activity of voltage-gated sodium channels in human atrial fibroblasts and myofibroblasts. Using the patch clamp technique we show that human atrial myofibroblasts display a fast inward voltage gated sodium current with a density of 13.28 ± 2.88 pA pF(-1) whereas no current was detectable in non-differentiated fibroblasts. Quantitative RT-PCR reveals a large amount of transcripts encoding the Na(v)1.5 α-subunit with a fourfold increased expression level in myofibroblasts when compared to fibroblasts. Accordingly, half of the current was blocked by 1 µm of tetrodotoxin and immunocytochemistry experiments reveal the presence of Na(v)1.5 proteins. Overall, this current exhibits similar biophysical characteristics to sodium currents found in cardiac myocytes except for the window current that is enlarged for potentials between -100 and -20 mV. Since fibrosis is one of the fundamental mechanisms implicated in atrial fibrillation, it is of great interest to investigate how this current could influence myofibroblast properties. Moreover, since several Na(v)1.5 mutations are related to cardiac pathologies, this study offers a new avenue on the fibroblasts involvement of these mutations.


Assuntos
Átrios do Coração/citologia , Átrios do Coração/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Técnicas de Patch-Clamp , Subunidades Proteicas , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Tradit Complement Med ; 12(4): 330-334, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35747353

RESUMO

Background and aim: Hydrocotyle bonariensis Comm ex Lamm (Araliaceae) is one of these plants sufficiently exploited in traditional African medicine for its hypotensive effect. However, the pharmacological effects of those plants on cardiac functions are not well known. The potassium currents IKs and IKr, responsible for the repolarization of cardiac cell action potential, strongly influence the human cardiac rhythm. Therefore, modulators of these currents have a beneficial or undesirable medical importance in relation to cardiac arrhythmias. In order to optimize the therapeutic use of this medicinal plant, we studied the effects of hydro-ethanolic leaf extract of Hydrocotyle bonariensis on both potassium currents. Experimental procedure: The patch clamp experiments for IK currents recording were performed on the HEK 293 (Human Embryonic Kidney 293) cell line, stably transfected with either KCNQ1 and KCNE1 genes encoding the channel responsible for the "IKs" current (HEK293 IKs), or with hERG (human ether-a-go-go related gene) gene encoding "IKr" current (HEK293 IKr). Results and conclusion: This study revealed that the hydro-ethanolic leaf extract of H. bonariensis significantly inhibits the slow potassium component (IKs) without altering the fast potassium component (IKr). The extract at 0.5 mg/ml decreases IKs conductance by 24 ± 4.1% (n = 6) without modifying its activation threshold suggesting a direct blockade of the slow potassium channel. This selective action of the extract on the IKs current reflects a class III anti-arrhythmic effect.

12.
Cell Calcium ; 103: 102546, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35144094

RESUMO

Calcium takes part in numerous cellular processes such as proliferation, migration, differentiation, or cell death and plays a particular role in myogenesis of skeletal muscle. Indeed, intracellular calcium signaling participates, in a non-negligeable manner, to the "on" signal of muscle differentiation from undifferentiated cells to differentiated myotubes. Therefore, this differentiation can be modulated by controlling calcium activity with electrical or optogenetic stimulation approaches. In this study, we used the optogenetic tool channelrhodopsin 2 (ChR2) to control calcium activity and to modulate skeletal muscle differentiation. Using primary cultures of mouse myotubes, we showed that ChR2 stimulation was well-adapted to control intracellular calcium activity at the single cell or whole culture scale. To modulate the calcium-dependent myotube differentiation, we used an optical stimulation protocol based on GCAMP6s-decoded spontaneous calcium activity patterns of differentiated myotubes. The optical training of myotubes increased the fusion index and their contractile ability. This study demonstrates that handling a mature calcium signature with such optogenetic tool improves the differentiation of primary murine myotubes.


Assuntos
Cálcio , Optogenética , Animais , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Camundongos , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo
13.
Biochem Biophys Res Commun ; 408(1): 6-11, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21420933

RESUMO

The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac physiopathological injury.


Assuntos
Fibroblastos/fisiologia , Ventrículos do Coração/metabolismo , Lisofosfolipídeos/fisiologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Função Ventricular/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glibureto/farmacologia , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Interleucina-6/metabolismo , Canais KATP/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/metabolismo , Receptores de Lisoesfingolipídeo/agonistas , Esfingosina/farmacologia , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato , Receptores de Sulfonilureias , Função Ventricular/efeitos dos fármacos
14.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298643

RESUMO

Glioblastoma is the most frequent and deadly form of primary brain tumors. Despite multimodal treatment, more than 90% of patients experience tumor recurrence. Glioblastoma contains a small population of cells, called glioblastoma stem cells (GSC) that are highly resistant to treatment and endowed with the ability to regenerate the tumor, which accounts for tumor recurrence. Transcriptomic studies disclosed an enrichment of calcium (Ca2+) signaling transcripts in GSC. In non-excitable cells, store-operated channels (SOC) represent a major route of Ca2+ influx. As SOC regulate the self-renewal of adult neural stem cells that are possible cells of origin of GSC, we analyzed the roles of SOC in cultures of GSC previously derived from five different glioblastoma surgical specimens. Immunoblotting and immunocytochemistry experiments showed that GSC express Orai1 and TRPC1, two core SOC proteins, along with their activator STIM1. Ca2+ imaging demonstrated that SOC support Ca2+ entries in GSC. Pharmacological inhibition of SOC-dependent Ca2+ entries decreased proliferation, impaired self-renewal, and reduced expression of the stem cell marker SOX2 in GSC. Our data showing the ability of SOC inhibitors to impede GSC self-renewal paves the way for a strategy to target the cells considered responsible for conveying resistance to treatment and tumor relapse.

15.
Pflugers Arch ; 460(1): 77-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20204400

RESUMO

Na(v)1.6 is the major voltage-gated sodium channel at nodes of Ranvier. This channel has been shown to produce a robust persistent inward current in whole-cell experiments. Na(v)1.6 plays an important role in axonal conduction and may significantly contribute to the pathophysiology of the injured nervous system through this persistent current. However, the underlying molecular mechanisms and regulation of the persistent current are not well understood. Using the whole-cell configuration of the patch-clamp technique, we investigated the Na(v)1.6 transient and persistent currents in HEK-293. Previous studies have shown that the persistent current depended on the content of the patch electrode. Therefore, we characterised the single-channel properties of the persistent current with an intact intracellular medium using the cell-attached configuration of the patch-clamp technique. In HEK-293 cells, the Na(v)1.6 persistent current recorded in the whole-cell configuration was 3-5% of the peak transient current. In single-channel recording, the ratio between peak and persistent open probability confirmed the magnitude of the persistent current observed in the whole-cell configuration. The cell-attached configuration revealed that the molecular mechanism of the whole-cell persistent current is a consequence of single Na(v)1.6 channels reopening.


Assuntos
Ativação do Canal Iônico , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Potenciais de Ação , Linhagem Celular , Humanos , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Canais de Sódio/genética , Fatores de Tempo , Transfecção
16.
Cells ; 9(7)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668787

RESUMO

Anomalies in constitutive calcium entry (CCE) have been commonly attributed to cell dysfunction in pathological conditions such as cancer. Calcium influxes of this type rely on channels, such as transient receptor potential (TRP) channels, to be constitutively opened and strongly depend on membrane potential and a calcium driving force. We developed an optogenetic approach based on the expression of the halorhodopsin chloride pump to study CCE in non-excitable cells. Using C2C12 cells, we found that halorhodopsin can be used to achieve a finely tuned control of membrane polarization. Escalating the membrane polarization by incremental changes in light led to a concomitant increase in CCE through transient receptor potential vanilloid 2 (TRPV2) channels. Moreover, light-induced calcium entry through TRPV2 channels promoted cell migration. Our study shows for the first time that by modulating CCE and related physiological responses, such as cell motility, halorhodopsin serves as a potentially powerful tool that could open new avenues for the study of CCE and associated cellular behaviors.


Assuntos
Cálcio/metabolismo , Movimento Celular , Potenciais da Membrana , Optogenética , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Movimento Celular/efeitos da radiação , Halorrodopsinas/metabolismo , Humanos , Luz , Potenciais da Membrana/efeitos da radiação , Camundongos , Mioblastos/metabolismo , Mioblastos/efeitos da radiação , Canais de Cátion TRPV/metabolismo
17.
J Mol Cell Cardiol ; 46(4): 508-17, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19166858

RESUMO

The present work is aimed at identifying and characterizing, at a molecular and functional level, new ionic conductances potentially involved in the excitation-secretion coupling and proliferation of cardiac ventricular fibroblasts. Among potassium channel transcripts which were screened by high-throughput real-time PCR, SUR2 and Kir6.1 mRNAs were found to be the most abundant in ventricular fibroblasts. The corresponding proteins were not detected by western blot following 5 days of cell culture, but had appeared at 7 days, increasing with extended cell culture duration as the fibroblasts differentiated into myofibroblasts. Using the inside-out configuration of the patch-clamp technique, single potassium channels could be recorded. These had properties similar to those reported for SUR2/Kir6.1 channels, i.e. activation by pinacidil, inhibition by glibenclamide and activation by intracellular UDP. As already reported for this molecular signature, they were insensitive to intracellular ATP. In the whole-cell configuration, these channels have been shown to be responsible for a glibenclamide-sensitive macroscopic potassium current which can be activated not only by pinacidil, but also by nanomolar concentrations of the sphingolipid sphingosine-1-phosphate (S1P). The activation of this current resulted in an increase in cell proliferation and a decrease in IL-6 secretion, suggesting it has a functional role in situations where S1P increases. Overall, this work demonstrates for the first time that SUR2/Kir6.1 channels represent a significant potassium conductance in ventricular fibroblasts which may be activated in physio-pathological conditions and which may impact on fibroblast proliferation and function.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibroblastos/metabolismo , Ventrículos do Coração/citologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Actinas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glibureto/farmacologia , Ventrículos do Coração/metabolismo , Interleucina-6/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais KATP , Lisofosfolipídeos/farmacologia , Camundongos , Pinacidil/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Droga/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Receptores de Sulfonilureias
18.
Aging Cell ; 18(2): e12894, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30680911

RESUMO

With the onset of advanced age, cardiac-associated pathologies have increased in prevalence. The hallmarks of cardiac aging include cardiomyocyte senescence, fibroblast proliferation, inflammation, and hypertrophy. The imbalance between levels of reactive oxygen species (ROS) and antioxidant enzymes is greatly enhanced in aging cells, promoting cardiac remodeling. In this work, we studied the long-term impact of phenolic compounds (PC) on age-associated cardiac remodeling. Three-month-old Wistar rats were treated for 14 months till middle-age with either 2.5, 5, 10, or 20 mg kg-1  day-1 of PC. PC treatment showed a dose-dependent preservation of cardiac ejection fraction and fractional shortening as well as decreased hypertrophy reflected by left ventricular chamber diameter and posterior wall thickness as compared to untreated middle-aged control animals. Analyses of proteins from cardiac tissue showed that PC attenuated several hypertrophic pathways including calcineurin/nuclear factor of activated T cells (NFATc3), calcium/calmodulin-dependent kinase II (CAMKII), extracellular regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3ß (GSK 3ß). PC-treated groups exhibited reduced plasma inflammatory and fibrotic markers and revealed as well ameliorated extracellular matrix remodeling and interstitial inflammation by a downregulated p38 pathway. Myocardia from PC-treated middle-aged rats presented less fibrosis with suppression of profibrotic transforming growth factor-ß1 (TGF-ß1) Smad pathway. Additionally, reduction of apoptosis and oxidative damage in the PC-treated groups was reflected by elevated antioxidant enzymes and reduced RNA/DNA damage markers. Our findings pinpoint that a daily consumption of phenolic compounds could preserve the heart from the detrimental effects of aging storm.


Assuntos
Envelhecimento , Modelos Biológicos , Fenóis/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle , Remodelação Ventricular/efeitos dos fármacos , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Dieta , Relação Dose-Resposta a Droga , Ecocardiografia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fenóis/administração & dosagem , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Disfunção Ventricular Esquerda/metabolismo
19.
Biochim Biophys Acta ; 1772(8): 885-94, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17382525

RESUMO

Cardiac hypertrophy is an adaptive process that occurs in response to increased physical stress on the heart. Hypertrophy, which may be induced by hypertension among other factors, is characterized by an increase in left ventricular mass and an associated increase in force production capacity. However, as sustained cardiac hypertrophy may lead to heart failure and sudden death, an understanding of the molecular processes involved in both the onset and consequences of hypertrophy is of significant importance. Calcium is a key player in the process underlying the development of cardiac hypertrophy. Recently, several Transient Receptor Potential proteins (TRPs), including calcium-permeable and calcium-regulated ion channels, have been shown to be related to various aspects of cardiac hypertrophy. TRPs are implicated in the development of cardiac hypertrophy (TRPC1, TRPC3, TRPC6), the electrophysiological perturbations associated with hypertrophy (TRPM4) and the progression to heart failure (TRPC7). This review describes the major characteristics of cardiac hypertrophy and focuses on the roles of TRPs in the physiological processes underlying hypertrophy.


Assuntos
Cardiomegalia/etiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Modelos Biológicos , Família Multigênica/fisiologia , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/fisiologia , Canais de Cátion TRPM/fisiologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
20.
J Med Liban ; 56(3): 168-73, 2008.
Artigo em Francês | MEDLINE | ID: mdl-18792554

RESUMO

In the heart, two types of calcium currents were described, the L- and T-type. In addition to these two types, a dihydropyridine-resistant Ca2+ component has been described to be up-regulated in rat ventricular cardiomyocytes during their differentiation- dedifferentiation process. The aim of our study is to examine if such calcium current component is present in human cardiomyocytes. The patch clamp technique was used to record Ca2+ current in atrial cells. In the presence of 2 microM nifedipine, residual current was activated (-2.7 +/- 0.7 pA/pF, n = 6) in the same voltage range as the L-type, nifedipine-sensitive Ca2+ current (-2.1 +/- 0.4 pA/pF, n = 6), but its steady-state inactivation was negatively shifted by 10 mV. This nifedipine-resistant Ca2+ current was completely blocked by 500 microM cadmium chloride and significantly enhanced by 1 microM isoproterenol (-7.5 +/- 0.5 pA/pF, n = 6; p <0.01). These results give evidence that a nifedipine-resistant Ca2+ current, similar to the one which has been shown to be developmentally expressed in rat ventricular cardiomyocytes, is observed in human atrial cells. Its molecular identity, its expression level as well as its role in pathophysiologic conditions remain to be studied.


Assuntos
Canais de Cálcio/efeitos dos fármacos , Cálcio/fisiologia , Átrios do Coração/inervação , Miócitos Cardíacos/efeitos dos fármacos , Cloreto de Cádmio , Di-Hidropiridinas/uso terapêutico , Humanos , Técnicas In Vitro , Nifedipino/uso terapêutico , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA