Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 18(5): 940-51, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17376700

RESUMO

Protonated ammonia and hydrazines (MH(+)) form complexes with ketones and the differences in masses and mobilities of the resulting ions, MH(+)(ketone)(n), are sufficient for separation in an ion mobility spectrometer at ambient pressure. The highest mass ion for any of the protonated molecules is obtained when the ketone is present at elevated concentrations in the supporting atmosphere of both the source and drift regions of the spectrometer so that an ion maintains a discrete composition and mobility. The sizes of the ion-molecule complexes were found to depend on the number of H atoms on the protonated nitrogen atom--four for ammonia, three for hydrazine, two for monomethylhydrazine, and one for 1,1-dimethylhydrazine, and the drift times of these ions were proportional to the size of the ion-molecule complex. Unexpected side products, including protonated hydrazones and azines, and associated ketone clusters, were isolated to a single drift tube containing ceramic parts and could not, from CID studies, be attributed to gas-phase ion chemistry. These findings illustrate that mobility resolution of ions in IMS and IMS/MS experiments can be enhanced through chemical modification of the supporting gas atmosphere without changes in the core ion.


Assuntos
Amônia/química , Hidrazinas/química , Cetonas/química , Espectrometria de Massas/métodos , Prótons , Ar , Pressão do Ar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA