Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Infect Dis ; 218(suppl_5): S636-S648, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30010950

RESUMO

Transchromosomic bovines (Tc-bovines) adaptively produce fully human polyclonal immunoglobulin (Ig)G antibodies after exposure to immunogenic antigen(s). The National Interagency Confederation for Biological Research and collaborators rapidly produced and then evaluated anti-Ebola virus IgG immunoglobulins (collectively termed SAB-139) purified from Tc-bovine plasma after sequential hyperimmunization with an Ebola virus Makona isolate glycoprotein nanoparticle vaccine. SAB-139 was characterized by several in vitro production, research, and clinical level assays using wild-type Makona-C05 or recombinant virus/antigens from different Ebola virus variants. SAB-139 potently activates natural killer cells, monocytes, and peripheral blood mononuclear cells and has high-binding avidity demonstrated by surface plasmon resonance. SAB-139 has similar concentrations of galactose-α-1,3-galactose carbohydrates compared with human-derived intravenous Ig, and the IgG1 subclass antibody is predominant. All rhesus macaques infected with Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 and treated with sufficient SAB-139 at 1 day (n = 6) or 3 days (n = 6) postinfection survived versus 0% of controls. This study demonstrates that Tc-bovines can produce pathogen-specific human Ig to prevent and/or treat patients when an emerging infectious disease either threatens to or becomes an epidemic.


Assuntos
Anticorpos Antivirais/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Animais , Bovinos , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Células Vero
2.
Curr Top Microbiol Immunol ; 411: 171-193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28643203

RESUMO

Ebola virus disease (EVD) in humans is associated with four ebolaviruses: Ebola virus (EBOV), Sudan virus (SUDV), Bundibugyo virus (BDBV), and Taï Forest virus. To date, no documented cases of human disease have been associated with Reston virus. Here, we describe the nonhuman primate (NHP) models that currently serve as gold standards for testing ebolavirus vaccines and therapeutic agents and elucidating underlying mechanisms of pathogenesis. Although multiple models have been explored over the past 50 years, the predominance of published work has been performed in macaque models. This chapter will focus on the most commonly used models.


Assuntos
Modelos Animais de Doenças , Ebolavirus , Doença pelo Vírus Ebola , Macaca/virologia , Animais , Ebolavirus/classificação , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/terapia , Doença pelo Vírus Ebola/virologia , Humanos
3.
Curr Top Microbiol Immunol ; 411: 229-261, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28918539

RESUMO

The Ebola virus disease outbreak that began in Western Africa in December 2013 was unprecedented in both scope and spread, and the global response was slower and less coherent than was optimal given the scale and pace of the epidemic. Past experience with limited localized outbreaks, lack of licensed medical countermeasures, reluctance by first responders to direct scarce resources to clinical research, community resistance to outside interventions, and lack of local infrastructure were among the factors delaying clinical research during the outbreak. Despite these hurdles, the global health community succeeded in accelerating Ebola virus vaccine development, in a 5-month interval initiating phase I trials in humans in September 2014 and initiating phase II/III trails in February 2015. Each of the three Ebola virus disease-affected countries, Sierra Leone, Guinea, and Liberia, conducted a phase II/III Ebola virus vaccine trial. Only one of these trials evaluating recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein demonstrated vaccine efficacy using an innovative mobile ring vaccination trial design based on a ring vaccination strategy responsible for eradicating smallpox that reached areas of new outbreaks. Thoughtful and intensive community engagement in each country enabled the critical community partnership and acceptance of the phase II/III in each country. Due to the delayed clinical trial initiation, relative to the epidemiologic peak of the outbreak in the three countries, vaccine interventions may or may not have played a major role in bringing the epidemic under control. Having demonstrated that clinical trials can be performed during a large outbreak, the global research community can now build on the experience to implement trials more rapidly and efficiently in future outbreaks. Incorporating clinical research needs into planning for future health emergencies and understanding what kind of trial designs is needed for reliable results in an epidemic of limited duration should improve global response to future infectious disease outbreaks.


Assuntos
Pesquisa Biomédica/estatística & dados numéricos , Vacinas contra Ebola/provisão & distribuição , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , África Ocidental/epidemiologia , Surtos de Doenças , Doença pelo Vírus Ebola/transmissão , Humanos
4.
Arch Virol ; 161(3): 755-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26608064

RESUMO

The family Arteriviridae presently includes a single genus Arterivirus. This genus includes four species as the taxonomic homes for equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), porcine respiratory and reproductive syndrome virus (PRRSV), and simian hemorrhagic fever virus (SHFV), respectively. A revision of this classification is urgently needed to accommodate the recent description of eleven highly divergent simian arteriviruses in diverse African nonhuman primates, one novel arterivirus in an African forest giant pouched rat, and a novel arterivirus in common brushtails in New Zealand. In addition, the current arterivirus nomenclature is not in accordance with the most recent version of the International Code of Virus Classification and Nomenclature. Here we outline an updated, amended, and improved arterivirus taxonomy based on current data. Taxon-specific sequence cut-offs are established relying on a newly established open reading frame 1b phylogeny and pairwise sequence comparison (PASC) of coding-complete arterivirus genomes. As a result, the current genus Arterivirus is replaced by five genera: Equartevirus (for EAV), Rodartevirus (LDV + PRRSV), Simartevirus (SHFV + simian arteriviruses), Nesartevirus (for the arterivirus from forest giant pouched rats), and Dipartevirus (common brushtail arterivirus). The current species Porcine reproductive and respiratory syndrome virus is divided into two species to accommodate the clear divergence of the European and American "types" of PRRSV, both of which now receive virus status. The current species Simian hemorrhagic fever virus is divided into nine species to accommodate the twelve known simian arteriviruses. Non-Latinized binomial species names are introduced to replace all current species names to clearly differentiate them from virus names, which remain largely unchanged.


Assuntos
Arteriviridae/classificação , Arteriviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Arteriviridae/genética , Análise por Conglomerados , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Homologia de Sequência , Terminologia como Assunto
5.
Inhal Toxicol ; 28(14): 670-676, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27919178

RESUMO

For inhalational studies and aerosol exposures to viruses, head-out plethysmography acquisition has been traditionally used for the determination of estimated inhaled dose in anesthetized nonhuman primates prior to or during an aerosol exposure. A pressure drop across a pneumotachograph is measured within a sealed chamber during inspiration/exhalation of the nonhuman primate, generating respiratory values and breathing frequencies. Due to the fluctuation of depth of anesthesia, pre-exposure respiratory values can be variable, leading to less precise and accurate dosing calculations downstream. Although an anesthesia infusion pump may help stabilize the depth of sedation, pumps are difficult to use within a sealed head-out plethysmography chamber. Real-time, head-out plethysmography acquisition could increase precision and accuracy of the measurements, but the bulky equipment needed for head-out plethysmography precludes real-time use inside a Class III biological safety cabinet, where most aerosol exposures occur. However, the respiratory inductive plethysmography (RIP) acquisition method measures the same respiratory parameters by detecting movement of the chest and abdomen during breathing using two elastic bands within the Class III biological safety cabinet. As respiratory values are relayed to a computer for software integration and analysis real-time, adjustment of aerosol exposure duration is based on the depth of sedation of the animal. The objective of this study was to compare values obtained using two methodologies (pre-exposure head-out plethysmography and real-time RIP). Transitioning to RIP technology with real-time acquisition provides more consistent, precise, and accurate aerosol dosing by reducing reported errors in respiratory values from anesthesia variability when using pre-exposure head-out plethysmography acquisition.


Assuntos
Pletismografia/métodos , Respiração , Testes de Toxicidade/métodos , Administração por Inalação , Aerossóis/administração & dosagem , Anestesia , Animais , Contenção de Riscos Biológicos , Feminino , Macaca mulatta , Masculino , Volume de Ventilação Pulmonar
6.
Inhal Toxicol ; 27(5): 247-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970823

RESUMO

Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05 to 500 µm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modeled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to non-human primates (NHPs) within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of NHP infectious disease models. Here, we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements.


Assuntos
Aerossóis/administração & dosagem , Testes de Toxicidade/instrumentação , Administração por Inalação , Animais , Tamanho da Partícula , Primatas , Testes de Toxicidade/métodos
7.
J Gen Virol ; 93(Pt 1): 159-164, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21940414

RESUMO

The public health threat of orthopoxviruses from bioterrorist attacks has prompted researchers to develop suitable animal models for increasing our understanding of viral pathogenesis and evaluation of medical countermeasures (MCMs) in compliance with the FDA Animal Efficacy Rule. We present an accessible intrabronchial cowpox virus (CPXV) model that can be evaluated under biosafety level-2 laboratory conditions. In this dose-ranging study, utilizing cynomolgus macaques, signs of typical orthopoxvirus disease were observed with the lymphoid organs, liver, skin (generally mild) and respiratory tract as target tissues. Clinical and histopathological evaluation suggests that intrabronchial CPXV recapitulated many of the features of monkeypox and variola virus, the causative agent of smallpox, infections in cynomolgus macaque models. These similarities suggest that CPXV infection in non-human primates should be pursued further as an alternative model of smallpox. Further development of the CPXV primate model, unimpeded by select agent and biocontainment restrictions, should facilitate the development of MCMs for smallpox.


Assuntos
Vírus da Varíola Bovina/patogenicidade , Varíola Bovina/virologia , Modelos Animais de Doenças , Macaca fascicularis , Animais , Contenção de Riscos Biológicos , Varíola Bovina/patologia , Vírus da Varíola Bovina/fisiologia , Humanos , Varíola/patologia , Varíola/virologia , Virulência
8.
Mol Pharm ; 8(5): 1980-4, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21732666

RESUMO

Intrathecal delivery of gene therapeutics is a route of administration that overcomes several of the limitations that plague current immunosuppressive treatments for autoimmune diseases of the central nervous system (CNS). Here we report intrathecal delivery of small amounts (3 µg) of plasmid DNA that codes for an immunomodulatory fusion protein, OX40-TRAIL, composed of OX40, a tumor necrosis factor receptor, and tumor necrosis factor related apoptosis inducing ligand (TRAIL). This DNA was delivered in a formulated nucleic acid-lipid complex (lipoplexes) with an asymmetric two-chain cationic lipid myristoyl (14:0) and lauroyl (12:1) rosenthal inhibitor-substituted compound (MLRI) formed from the tetraalkylammonium glycerol-based compound N-(1-(2,3-dioleoyloxy)-propyl-N-1-(2-hydroxy)ethyl)-N,N-dimethyl ammonium iodide. Delivery and expression in the CNS of OX40-TRAIL in the mouse prior to onset of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, decreased the severity of clinical disease. We believe this preclinical demonstration of rapid, widespread, and biologically therapeutic nonviral gene delivery to the CNS is important in further development of clinical lipid-based therapeutics for CNS disorders.


Assuntos
DNA/química , Encefalomielite Autoimune Experimental/terapia , Técnicas de Transferência de Genes , Terapia Genética , Lipídeos/química , Animais , Sistema Nervoso Central/metabolismo , Cisterna Magna , DNA/administração & dosagem , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Expressão Gênica , Genes Reporter , Injeções Espinhais , Lauratos/química , Lipídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Miristatos/química , Plasmídeos/administração & dosagem , Plasmídeos/química , Receptores OX40/genética , Receptores OX40/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Estearatos/administração & dosagem , Estearatos/química , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
9.
Viruses ; 13(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917085

RESUMO

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b', is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Assuntos
Arterivirus/genética , DNA Complementar/genética , Proteínas de Fluorescência Verde/genética , Fases de Leitura Aberta , RNA Viral/genética , Recombinação Genética , Replicação Viral/genética , Animais , Arterivirus/fisiologia , Linhagem Celular , Quirópteros , Hominidae , Humanos , Plasmídeos/genética , Estudo de Prova de Conceito , Roedores
10.
Nat Rev Dis Primers ; 6(1): 13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080199

RESUMO

Ebola virus disease (EVD) is a severe and frequently lethal disease caused by Ebola virus (EBOV). EVD outbreaks typically start from a single case of probable zoonotic transmission, followed by human-to-human transmission via direct contact or contact with infected bodily fluids or contaminated fomites. EVD has a high case-fatality rate; it is characterized by fever, gastrointestinal signs and multiple organ dysfunction syndrome. Diagnosis requires a combination of case definition and laboratory tests, typically real-time reverse transcription PCR to detect viral RNA or rapid diagnostic tests based on immunoassays to detect EBOV antigens. Recent advances in medical countermeasure research resulted in the recent approval of an EBOV-targeted vaccine by European and US regulatory agencies. The results of a randomized clinical trial of investigational therapeutics for EVD demonstrated survival benefits from two monoclonal antibody products targeting the EBOV membrane glycoprotein. New observations emerging from the unprecedented 2013-2016 Western African EVD outbreak (the largest in history) and the ongoing EVD outbreak in the Democratic Republic of the Congo have substantially improved the understanding of EVD and viral persistence in survivors of EVD, resulting in new strategies toward prevention of infection and optimization of clinical management, acute illness outcomes and attendance to the clinical care needs of patients.


Assuntos
Doença pelo Vírus Ebola/complicações , Doença pelo Vírus Ebola/fisiopatologia , África Ocidental/epidemiologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/epidemiologia , Humanos , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos
11.
Viruses ; 12(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952352

RESUMO

For highly pathogenic viruses, reporter assays that can be rapidly performed are critically needed to identify potentially functional mutations for further study under maximal containment (e.g., biosafety level 4 [BSL-4]). The Ebola virus nucleoprotein (NP) plays multiple essential roles during the viral life cycle, yet few tools exist to study the protein under BSL-2 or equivalent containment. Therefore, we adapted reporter assays to measure NP oligomerization and virion-like particle (VLP) production in live cells and further measured transcription and replication using established minigenome assays. As a proof-of-concept, we examined the NP-R111C substitution, which emerged during the 2013‒2016 Western African Ebola virus disease epidemic and rose to high frequency. NP-R111C slightly increased NP oligomerization and VLP budding but slightly decreased transcription and replication. By contrast, a synthetic charge-reversal mutant, NP-R111E, greatly increased oligomerization but abrogated transcription and replication. These results are intriguing in light of recent structures of NP oligomers, which reveal that the neighboring residue, K110, forms a salt bridge with E349 on adjacent NP molecules. By developing and utilizing multiple reporter assays, we find that the NP-111 position mediates a complex interplay between NP's roles in protein structure, virion budding, and transcription and replication.


Assuntos
Aminoácidos/química , Ebolavirus/genética , Genoma Viral , Proteínas do Nucleocapsídeo/química , Liberação de Vírus , Aminoácidos/genética , Ebolavirus/química , Ebolavirus/fisiologia , Células HEK293 , Humanos , Proteínas do Nucleocapsídeo/genética , Estudo de Prova de Conceito , Vírion/fisiologia , Montagem de Vírus
12.
Radiol Case Rep ; 14(10): 1272-1275, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31462952

RESUMO

During an infectious disease modeling study, a rhesus macaque (Macaca mulatta), experienced acute transient tachypnea including transient severe motion during the 70-second phases of serial contrast-enhanced magnetic resonance imaging of the abdomen. This same animal experienced transient severe motion during all but 2 of the 8 scans of the year-long study. This animal was the only animal in the study (1 of 12) to have this reaction to gadoxetate; the animal also vomited after the contrast injection once on day 146 of the study. On day 86, a different contrast agent (gadobutrol) was used, and the reaction did not occur. No treatment was required for any conditions relating to the reaction due to the self-limited nature. This type of reaction has not yet been reported in veterinary subjects before and is likely to be idiosyncratic after first exposure. However, this reaction should not be life threatening, and other contrast agents can be used if acute transient tachypnea does occur.

13.
PLoS One ; 14(8): e0221407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31454374

RESUMO

Antibody titers against a viral pathogen are typically measured using an antigen binding assay, such as an enzyme-linked immunosorbent assay (ELISA), which only measures the ability of antibodies to identify a viral antigen of interest. Neutralization assays measure the presence of virus-neutralizing antibodies in a sample. Traditional neutralization assays, such as the plaque reduction neutralization test (PRNT), are often difficult to use on a large scale due to being both labor and resource intensive. Here we describe an Ebola virus fluorescence reduction neutralization assay (FRNA), which tests for neutralizing antibodies, that requires only a small volume of sample in a 96-well format and is easy to automate. The readout of the FRNA is the percentage of Ebola virus-infected cells measured with an optical reader or overall chemiluminescence that can be generated by multiple reading platforms. Using blinded human clinical samples (EVD survivors or contacts) obtained in Liberia during the 2013-2016 Ebola virus disease outbreak, we demonstrate there was a high degree of agreement between the FRNA-measured antibody titers and the Filovirus Animal Non-clinical Group (FANG) ELISA titers with the FRNA providing information on the neutralizing capabilities of the antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Animais , Anticorpos Bloqueadores/imunologia , Chlorocebus aethiops , Surtos de Doenças , Ebolavirus/patogenicidade , Ensaio de Imunoadsorção Enzimática , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Libéria , Testes de Neutralização/métodos , Células Vero
14.
PLoS One ; 13(3): e0194868, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566060

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) presents an emerging threat to public health worldwide by causing severe respiratory disease in humans with high virulence and case fatality rate (about 35%) since 2012. Little is known about the pathogenesis and innate antiviral response in primary human monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs) upon MERS-CoV infection. In this study, we assessed MERS-CoV replication as well as induction of inflammatory cytokines and chemokines in MDMs and immature and mature MDDCs. Immature MDDCs and MDMs were permissive for MERS-CoV infection, while mature MDDCs were not, with stimulation of proinflammatory cytokine and chemokine upregulation in MDMs, but not in MDDCs. To further evaluate the antiviral activity of well-defined drugs in primary antigen presenting cells (APCs), three compounds (chloroquine, chlorpromazine and toremifine), each with broad-spectrum antiviral activity in immortalized cell lines, were evaluated in MDMs and MDDCs to determine their antiviral effect on MERS-CoV infection. While chloroquine was not active in these primary cells, chlorpromazine showed strong anti-MERS-CoV activity, but it was associated with high cytotoxicity narrowing the potential window for drug utilization. Unlike in established cells, toremifene had marginal activity when tested in antigen presenting cells, with high apparent cytotoxicity, also limiting its potential as a therapeutic option. These results demonstrate the value of testing drugs in primary cells, in addition to established cell lines, before initiating preclinical or clinical studies for MERS treatment and the importance of carefully assessing cytotoxicity in drug screen assays. Furthermore, these studies also highlight the role of APCs in stimulating a robust protective immune response to MERS-CoV infection.


Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Células Apresentadoras de Antígenos/fisiologia , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Macrófagos/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Monócitos/fisiologia , Resultado do Tratamento , Células Vero
15.
Viruses ; 10(11)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463334

RESUMO

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000⁻300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Proteínas de Fluorescência Verde/análise , Vírus Lassa/crescimento & desenvolvimento , Substâncias Luminescentes/análise , Testes de Neutralização/métodos , Coloração e Rotulagem/métodos , Animais , Anticorpos Neutralizantes/imunologia , Antivirais/farmacologia , Chlorocebus aethiops , Fluorometria/métodos , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Vírus Lassa/efeitos dos fármacos , Vírus Lassa/genética , Vírus Lassa/imunologia , Genética Reversa , Ribavirina/farmacologia , Células Vero
16.
Comp Med ; 67(3): 253-262, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28662754

RESUMO

Ebola virus is a highly pathogenic member of the family Filoviridae that causes a severe hemorrhagic disease in humans and NHP. The 2013-2016 West African outbreak has increased interest in the development and refinement of animal models of Ebola virus disease. These models are used to test countermeasures and vaccines, gain scientific insights into the mechanisms of disease progression and transmission, and study key correlates of immunology. Ebola virus is classified as a BSL4 pathogen and Category A agent, for which the United States government requires preparedness in case of bioterrorism. Rodents, such as Syrian golden hamsters (Mesocricetus auratus), mice (Mus musculus), and guinea pigs (Cavia porcellus), are the most common research species. However, NHP, especially macaques, are favored for Ebola virus disease research due to similarities with humans regarding the pathogenesis, clinical presentation, laboratory findings, and causes of fatality. To satisfy the regulatory requirements for approval of countermeasures against high-consequence pathogens, the FDA instituted the Animal Rule, which permits efficacy studies in animal models in place of human clinical data when such studies are not feasible or ethical. This review provides a comprehensive summary of various animal models and their use in Ebola virus disease research.


Assuntos
Modelos Animais de Doenças , Doença pelo Vírus Ebola , Animais , Callithrix , Cricetinae , Surtos de Doenças , Cobaias , Macaca , Camundongos , Projetos de Pesquisa
17.
FEMS Microbiol Rev ; 40(4): 494-519, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27268907

RESUMO

Eight viruses are currently assigned to the family Filoviridae Marburg virus, Sudan virus and, in particular, Ebola virus have received the most attention both by researchers and the public from 1967 to 2013. During this period, natural human filovirus disease outbreaks occurred sporadically in Equatorial Africa and, despite high case-fatality rates, never included more than several dozen to a few hundred infections per outbreak. Research emphasis shifted almost exclusively to Ebola virus in 2014, when this virus was identified as the cause of an outbreak that has thus far involved more than 28 646 people and caused more than 11 323 deaths in Western Africa. Consequently, major efforts are currently underway to develop licensed medical countermeasures against Ebola virus infection. However, the ecology of and mechanisms behind Ebola virus emergence are as little understood as they are for all other filoviruses. Consequently, the possibility of the future occurrence of a large disease outbreak caused by other less characterized filoviruses (i.e. Bundibugyo virus, Lloviu virus, Ravn virus, Reston virus and Taï Forest virus) is impossible to rule out. Yet, for many of these viruses, not even rudimentary research tools are available, let alone medical countermeasures. This review summarizes the current knowledge on these less well-characterized filoviruses.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Infecções por Filoviridae/virologia , Doenças Negligenciadas/virologia , África/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Surtos de Doenças/prevenção & controle , Filoviridae , Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/prevenção & controle , Humanos , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/prevenção & controle
18.
J Vis Exp ; (116)2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768081

RESUMO

Work in a biosafety level 4 (BSL-4) containment laboratory requires time and great attention to detail. The same work that is done in a BSL-2 laboratory with non-high-consequence pathogens will take significantly longer in a BSL-4 setting. This increased time requirement is due to a multitude of factors that are aimed at protecting the researcher from laboratory-acquired infections, the work environment from potential contamination and the local community from possible release of high-consequence pathogens. Inside the laboratory, movement is restricted due to air hoses attached to the mandatory full-body safety suits. In addition, disinfection of every item that is removed from Class II biosafety cabinets (BSCs) is required. Laboratory specialists must be trained in the practices of the BSL-4 laboratory and must show high proficiency in the skills they are performing. The focus of this article is to outline proper procedures and techniques to ensure laboratory biosafety and experimental accuracy using a standard viral plaque assay as an example procedure. In particular, proper techniques to work safely in a BSL-4 environment when performing an experiment will be visually emphasized. These techniques include: setting up a Class II BSC for experiments, proper cleaning of the Class II BSC when finished working, waste management and safe disposal of waste generated inside a BSL-4 laboratory, and the removal of inactivated samples from inside a BSL-4 laboratory to the BSL-2 laboratory.


Assuntos
Contenção de Riscos Biológicos , Laboratórios , Segurança , Ensaio de Placa Viral , Medicina Geral , Eliminação de Resíduos de Serviços de Saúde
19.
J Vis Exp ; (116)2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768036

RESUMO

Aerosol or inhalational studies of high-consequence pathogens have recently been increasing in number due to the perceived threat of intentional aerosol releases or unexpected natural aerosol transmission. Specific laboratories designed to perform these experiments require tremendous engineering controls to provide a safe and secure working environment and constant systems maintenance to sustain functionality. Class III biosafety cabinets, also referred to as gloveboxes, are gas-tight enclosures with non-opening windows. These cabinets are maintained under negative pressure by double high-efficiency-particulate-air (HEPA)-filtered exhaust systems and are the ideal primary containment for housing aerosolization equipment. A well planned workflow between staff members within high containment from, for instance, an animal biosafety level-4 (ABSL-4) suit laboratory to the ABSL-4 cabinet laboratory is a crucial component for successful experimentation. For smooth study execution, establishing a communication network, moving equipment and subjects, and setting up and placing equipment, requires staff members to meticulously plan procedures prior to study initiation. Here, we provide an overview and a visual representation of how aerobiology research is conducted at the National Institutes of Health, National Institute of Allergy and Infectious Diseases Integrated Research Facility at Fort Detrick, Maryland, USA, within an ABSL-4 environment.


Assuntos
Aerossóis , Contenção de Riscos Biológicos , Laboratórios , Segurança , Movimentos do Ar , Animais , Comunicação , Ambiente Controlado , Equipamentos e Provisões , Humanos
20.
J Vis Exp ; (116)2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768063

RESUMO

Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.


Assuntos
Contenção de Riscos Biológicos , Laboratórios , Roupa de Proteção , Humanos , Pessoal de Laboratório , Segurança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA