Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer ; 126(15): 3579-3592, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484926

RESUMO

BACKGROUND: Poor outcomes for patients with ovarian cancer relate to dormant, drug-resistant cancer cells that survive after primary surgery and chemotherapy. Ovarian cancer (OvCa) cells persist in poorly vascularized scars on the peritoneal surface and depend on autophagy to survive nutrient deprivation. The authors have sought drugs that target autophagic cancer cells selectively to eliminate residual disease. METHODS: By using unbiased small-interfering RNA (siRNA) screens, the authors observed that knockdown of anaplastic lymphoma kinase (ALK) reduced the survival of autophagic OvCa cells. Small-molecule ALK inhibitors were evaluated for their selective toxicity against autophagic OvCa cell lines and xenografts. Autophagy was induced by reexpression of GTP-binding protein Di-Ras3 (DIRAS3) or serum starvation and was evaluated with Western blot analysis, fluorescence imaging, and transmission electron microscopy. Signaling pathways required for crizotinib-induced apoptosis of autophagic cells were explored with flow cytometric analysis, Western blot analysis, short-hairpin RNA knockdown of autophagic proteins, and small-molecule inhibitors of STAT3 and BCL-2. RESULTS: Induction of autophagy by reexpression of DIRAS3 or serum starvation in multiple OvCa cell lines significantly reduced the 50% inhibitory concentration of crizotinib and other ALK inhibitors. In 2 human OvCa xenograft models, the DIRAS3-expressing tumors treated with crizotinib had significantly decreased tumor burden and long-term survival in 67% to 79% of mice. Crizotinib treatment of autophagic cancer cells further enhanced autophagy and induced autophagy-mediated apoptosis by decreasing phosphorylated STAT3 and BCL-2 signaling. CONCLUSIONS: Crizotinib may eliminate dormant, autophagic, drug-resistant OvCa cells that remain after conventional cytoreductive surgery and combination chemotherapy. A clinical trial of ALK inhibitors as maintenance therapy after second-look operations should be seriously considered.


Assuntos
Quinase do Linfoma Anaplásico/genética , Neoplasias Ovarianas/tratamento farmacológico , Fator de Transcrição STAT3/genética , Proteínas rho de Ligação ao GTP/genética , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/genética , Sobrevivência Celular/genética , Crizotinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
NPJ Breast Cancer ; 6: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909186

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, and is associated with a poor prognosis due to frequent distant metastasis and lack of effective targeted therapies. Previously, we identified maternal embryonic leucine zipper kinase (MELK) to be highly expressed in TNBCs as compared with ER-positive breast cancers. Here we determined the molecular mechanism by which MELK is overexpressed in TNBCs. Analysis of publicly available data sets revealed that MELK mRNA is elevated in p53-mutant breast cancers. Consistent with this observation, MELK protein levels are higher in p53-mutant vs. p53 wild-type breast cancer cells. Furthermore, inactivation of wild-type p53, by loss or mutation of the p53 gene, increases MELK expression, whereas overexpression of wild-type p53 in p53-null cells reduces MELK promoter activity and MELK expression. We further analyzed MELK expression in breast cancer data sets and compared that with known wild-type p53 target genes. This analysis revealed that MELK expression strongly correlates with genes known to be suppressed by wild-type p53. Promoter deletion studies identified a p53-responsive region within the MELK promoter that did not map to the p53 consensus response elements, but to a region containing a FOXM1-binding site. Consistent with this result, knockdown of FOXM1 reduced MELK expression in p53-mutant TNBC cells and expression of wild-type p53 reduced FOXM1 expression. ChIP assays demonstrated that expression of wild-type p53 reduces binding of E2F1 (a critical transcription factor controlling FOXM1 expression) to the FOXM1 promoter, thereby, reducing FOXM1 expression. These results show that wild-type p53 suppresses FOXM1 expression, and thus MELK expression, through indirect mechanisms. Overall, these studies demonstrate that wild-type p53 represses MELK expression by inhibiting E2F1A-dependent transcription of FOXM1 and that mutation-driven loss of wild-type p53, which frequently occurs in TNBCs, induces MELK expression by suppressing FOXM1 expression and activity in p53-mutant breast cancers.

3.
Mol Cancer Res ; 18(12): 1825-1838, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32661114

RESUMO

Triple-negative breast cancer (TNBC) has the worst prognosis of all breast cancers, and lacks effective targeted treatment strategies. Previously, we identified 33 transcription factors highly expressed in TNBC. Here, we focused on six sex determining region Y-related HMG-box (SOX) transcription factors (SOX4, 6, 8, 9, 10, and 11) highly expressed in TNBCs. Our siRNA screening assay demonstrated that SOX9 knockdown suppressed TNBC cell growth and invasion in vitro. Thus, we hypothesized that SOX9 is an important regulator of breast cancer survival and metastasis, and demonstrated that knockout of SOX9 reduced breast tumor growth and lung metastasis in vivo. In addition, we found that loss of SOX9 induced profound apoptosis, with only a slight impairment of G1 to S progression within the cell cycle, and that SOX9 directly regulates genes controlling apoptosis. On the basis of published CHIP-seq data, we demonstrated that SOX9 binds to the promoter of apoptosis-regulating genes (tnfrsf1b, fadd, tnfrsf10a, tnfrsf10b, and ripk1), and represses their expression. SOX9 knockdown upregulates these genes, consistent with the induction of apoptosis. Analysis of available CHIP-seq data showed that SOX9 binds to the promoters of several epithelial-mesenchymal transition (EMT)- and metastasis-regulating genes. Using CHIP assays, we demonstrated that SOX9 directly binds the promoters of genes involved in EMT (vim, cldn1, ctnnb1, and zeb1) and that SOX9 knockdown suppresses the expression of these genes. IMPLICATIONS: Our studies identified the SOX9 protein as a "master regulator" of breast cancer cell survival and metastasis, and provide preclinical rationale to develop SOX9 inhibitors for the treatment of women with metastatic triple-negative breast cancer.


Assuntos
Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Fatores de Transcrição SOX9/genética , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima , Animais , Apoptose , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Células MCF-7 , Camundongos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Neoplasias de Mama Triplo Negativas/genética
4.
Oncogenesis ; 7(1): 5, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29358623

RESUMO

The oncogenic epidermal growth factor receptor (EGFR) is commonly overexpressed in solid cancers. The tyrosine kinase activity of EGFR has been a major therapeutic target for cancer; however, the efficacy of EGFR tyrosine kinase inhibitors to treat cancers has been challenged by innate and acquired resistance at the clinic. Accumulating evidence suggests that EGFR possesses kinase-independent pro-survival functions, and that cancer cells are more vulnerable to reduction of EGFR protein than to inhibition of its kinase activity. The molecular mechanism underlying loss-of-EGFR-induced cell death remains largely unknown. In this study, we show that, unlike inhibiting EGFR kinase activity that is known to induce pro-survival non-selective autophagy, downregulating EGFR protein, either by siRNA, or by a synthetic EGFR-downregulating peptide (Herdegradin), kills prostate and ovarian cancer cells via selective mitophagy by activating the mTORC2/Akt axis. Furthermore, Herdegradin induced mitophagy and inhibited the growth of orthotopic ovarian cancers in mice. This study identifies anti-mitophagy as a kinase-independent function of EGFR, reveals a novel function of mTORC2/Akt axis in promoting mitophagy in cancer cells, and offers a novel approach for pharmacological downregulation of EGFR protein as a potential treatment for EGFR-positive cancers.

5.
Clin Cancer Res ; 23(9): 2136-2142, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087641

RESUMO

The aberrant activation of oncogenic signaling pathways is a universal phenomenon in cancer and drives tumorigenesis and malignant transformation. This abnormal activation of signaling pathways in cancer is due to the altered expression of protein kinases and phosphatases. In response to extracellular signals, protein kinases activate downstream signaling pathways through a series of protein phosphorylation events, ultimately producing a signal response. Protein tyrosine phosphatases (PTP) are a family of enzymes that hydrolytically remove phosphate groups from proteins. Initially, PTPs were shown to act as tumor suppressor genes by terminating signal responses through the dephosphorylation of oncogenic kinases. More recently, it has become clear that several PTPs overexpressed in human cancers do not suppress tumor growth; instead, they positively regulate signaling pathways and promote tumor development and progression. In this review, we discuss both types of PTPs: those that have tumor suppressor activities as well as those that act as oncogenes. We also discuss the potential of PTP inhibitors for cancer therapy. Clin Cancer Res; 23(9); 2136-42. ©2017 AACR.


Assuntos
Carcinogênese/genética , Terapia de Alvo Molecular , Neoplasias/enzimologia , Proteínas Tirosina Fosfatases/genética , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Proteínas Tirosina Fosfatases/uso terapêutico , Transdução de Sinais/genética
6.
Oncotarget ; 6(33): 34992-5003, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26378037

RESUMO

Epidermal growth factor receptor (EGFR) is an oncogenic receptor tyrosine kinase. Canonically, the tyrosine kinase activity of EGFR is regulated by its extracellular ligands. However, ligand-independent activation of EGFR exists in certain cancer cells, and the underlying mechanism remains to be defined. In this study, using PC3 and A549 cells as a model, we have found that, in the absence of extracellular ligands, a subpopulation of EGFR is constitutively active, which is needed for maintaining cell proliferation. Furthermore, we have found that fatty acid synthase (FASN)-dependent palmitoylation of EGFR is required for EGFR dimerization and kinase activation. Inhibition of FASN or palmitoyl acyltransferases reduced the activity and down-regulated the levels of EGFR, and sensitized cancer cells to EGFR tyrosine kinase inhibitors. It is concluded that EGFR can be activated intracellularly by FASN-dependent palmitoylation. This mechanism may serve as a new target for improving EGFR-based cancer therapy.


Assuntos
Receptores ErbB/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Neoplasias/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Imuno-Histoquímica , Imunoprecipitação , Espaço Intracelular/enzimologia , Lipoilação , Transfecção
7.
PLoS One ; 10(12): e0145061, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26661278

RESUMO

Hereditary, hormonal, and behavioral factors contribute to the development of breast cancer. Alcohol consumption is a modifiable behavior that is linked to increased breast cancer risks and is associated with the development of hormone-dependent breast cancers as well as disease progression and recurrence following endocrine treatment. In this study we examined the molecular mechanisms of action of alcohol by applying molecular, genetic, and genomic approaches in characterizing its effects on estrogen receptor (ER)-positive breast cancer cells. Treatments with alcohol promoted cell proliferation, increased growth factor signaling, and up-regulated the transcription of the ER target gene GREB1 but not the canonical target TFF1/pS2. Microarray analysis following alcohol treatment identified a large number of alcohol-responsive genes, including those which function in apoptotic and cell proliferation pathways. Furthermore, expression profiles of the responsive gene sets in tumors were strongly associated with clinical outcomes in patients who received endocrine therapy. Correspondingly, alcohol treatment attenuated the anti-proliferative effects of the endocrine therapeutic drug tamoxifen in ER-positive breast cancer cells. To determine the contribution and functions of responsive genes, their differential expression in tumors were assessed between outcome groups. The proto-oncogene BRAF was identified as a novel alcohol- and estrogen-induced gene that showed higher expression in patients with poor outcomes. Knock-down of BRAF, moreover, prevented the proliferation of breast cancer cells. These findings not only highlight the mechanistic basis of the effects of alcohol on breast cancer cells and increased risks for disease incidents and recurrence, but may facilitate the discovery and characterization of novel oncogenic pathways and markers in breast cancer research and therapeutics.


Assuntos
Antineoplásicos Hormonais/toxicidade , Etanol/farmacologia , Tamoxifeno/toxicidade , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Estradiol/toxicidade , Feminino , Humanos , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/uso terapêutico , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
Cell Cycle ; 13(15): 2415-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483192

RESUMO

Increased expressions of fatty acid synthase (FASN) and epidermal growth factor receptor (EGFR) are common in cancer cells. De novo synthesis of palmitate by FASN is critical for the survival of cancer cells via mechanisms independent of its role as an energy substrate. Besides the plasma membrane and the nucleus, EGFR can also localize at the mitochondria; however, signals that can activate mitochondrial EGFR (mtEGFR) and the functions of mtEGFR of cancer cells remain unknown. The present study characterizes mtEGFR in the mitochondria of cancer cells (prostate and breast) and reveals that mtEGFR can promote mitochondrial fusion through increasing the protein levels of fusion proteins PHB2 and OPA1. Activation of plasma membranous EGFR (pmEGFR) stimulates the de novo synthesis of palmitate through activation of FASN and ATP-citrate lyase (ACLy). In vitro kinase assay with isolated mitochondria shows that palmitate can activate mtEGFR. Inhibition of FASN blocks the mtEGFR phosphorylation and palmitoylation induced by EGF. Mutational studies show that the cysteine 797 is important for mtEGFR activation and palmitoylation. Inhibition of FASN can block EGF induced mitochondrial fusion and increased the sensitivity of prostate cancer cells to EGFR tyrosine kinase inhibitor. In conclusion, these results suggest that mtEGFR can be activated by pmEGFR through de novo synthesized palmitate to promote mitochondrial fusion and survival of cancer cells. This mechanism may serve as a novel target to improve EGFR-based cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Palmitatos/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Cisteína/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proibitinas , Análise Serial de Proteínas/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo
9.
PLoS One ; 9(9): e106289, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184494

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC.


Assuntos
Antineoplásicos/farmacologia , Benzoatos/farmacologia , Benzilaminas/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Receptores Nucleares Órfãos/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Feminino , Perfilação da Expressão Gênica , Humanos , Ligantes , Receptores X do Fígado , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Gencitabina
10.
Mol Cancer Ther ; 12(12): 2782-91, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132143

RESUMO

Combination chemotherapy is standard for metastatic colorectal cancer; however, nearly all patients develop drug resistance. Understanding the mechanisms that lead to resistance to individual chemotherapeutic agents may enable identification of novel targets and more effective therapy. Irinotecan is commonly used in first- and second-line therapy for patients with metastatic colorectal cancer, with the active metabolite being SN38. Emerging evidence suggests that altered metabolism in cancer cells is fundamentally involved in the development of drug resistance. Using Oncomine and unbiased proteomic profiling, we found that ATP citrate lyase (ACLy), the first-step rate-limiting enzyme for de novo lipogenesis, was upregulated in colorectal cancer compared with its levels in normal mucosa and in chemoresistant colorectal cancer cells compared with isogenic chemo-naïve colorectal cancer cells. Overexpression of exogenous ACLy by lentivirus transduction in chemo-naïve colorectal cancer cells led to significant chemoresistance to SN38 but not to 5-fluorouracil or oxaliplatin. Knockdown of ACLy by siRNA or inhibition of its activity by a small-molecule inhibitor sensitized chemo-naïve colorectal cancer cells to SN38. Furthermore, ACLy was significantly increased in cancer cells that had acquired resistance to SN38. In contrast to chemo-naïve cells, targeting ACLy alone was not effective in resensitizing resistant cells to SN38, due to a compensatory activation of the AKT pathway triggered by ACLy suppression. Combined inhibition of AKT signaling and ACLy successfully resensitized SN38-resistant cells to SN38. We conclude that targeting ACLy may improve the therapeutic effects of irinotecan and that simultaneous targeting of ACLy and AKT may be warranted to overcome SN38 resistance.


Assuntos
ATP Citrato (pro-S)-Liase/genética , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , ATP Citrato (pro-S)-Liase/metabolismo , Camptotecina/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Ativação Enzimática , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Irinotecano , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA