Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Chem Res Toxicol ; 33(11): 2793-2803, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32986415

RESUMO

Botanical dietary supplements (BDS) containing hops are sold as women's health supplements due to the potent hop phytoestrogen, 8-prenylnaringenin (8-PN), and the cytoprotective chalcone, xanthohumol. Previous studies have shown a standardized hop extract to beneficially influence chemical estrogen carcinogenesis in vitro by fostering detoxified 2-hydroxylation over genotoxic 4-hydroxylation estrogen metabolism. In this study, hop extract and its bioactive compounds were investigated for its mechanism of action within the chemical estrogen carcinogenesis pathway, which is mainly mediated through the 4-hydroxylation pathway catalyzed by CYP1B1 that can form gentoxic quinones. Aryl hydrocarbon receptor (AhR) agonists induce CYP1A1 and CYP1B1, while estrogen receptor alpha (ERα) inhibits transcription of CYP1A1, the enzyme responsible for 2-hydroxylated estrogens and the estrogen detoxification pathway. An In-Cell Western MCF-7 cell assay revealed hop extract and 6-prenylnaringenin (6-PN) degraded ERα via an AhR-dependent mechanism. Reverse transcription PCR and xenobiotic response element luciferase assays showed hop extract and 6-PN-mediated activation of AhR and induction of CYP1A1. A reduction in estrogen-mediated DNA (cytosine-5)-methyltransferase 1 (DNMT1) downregulation of CYP1A1 accompanied this activity in a chromatin immunoprecipitation assay. Ultimately, hop extract and 6-PN induced preferential metabolism of estrogens to their detoxified form in vitro. These results suggest that the standardized hop extract and 6-PN activate AhR to attenuate epigenetic inhibition of CYP1A1 through degradation of ERα, ultimately increasing 2-hydroxylated estrogens. A new mechanism of action rationalizes the positive influence of hop BDS and 6-PN on oxidative estrogen metabolism in vitro and, thus, potentially on chemical estrogen carcinogenesis. The findings underscore the importance of elucidating various biological mechanisms of action and standardizing BDS to multiple phytoconstituents for optimal resilience promoting properties.


Assuntos
Citocromo P-450 CYP1A1/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios/efeitos adversos , Flavonoides/farmacologia , Humulus/química , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Células Tumorais Cultivadas
2.
Chem Res Toxicol ; 32(2): 222-233, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30608650

RESUMO

Botanical dietary supplements for women's health are increasingly popular. Older women tend to take botanical supplements such as hops as natural alternatives to traditional hormone therapy to relieve menopausal symptoms. Especially extracts from spent hops, the plant material remaining after beer brewing, are enriched in bioactive prenylated flavonoids that correlate with the health benefits of the plant. The chalcone xanthohumol (XH) is the major prenylated flavonoid in spent hops. Other less abundant but important bioactive prenylated flavonoids are isoxanthohumol (IX), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN). Pharmacokinetic studies revealed that these flavonoids are conjugated rapidly with glucuronic acid. XH also undergoes phase I metabolism in vivo to form IX, 8-PN, and 6-PN. Several hop constituents are responsible for distinct effects linked to multiple biological targets, including hormonal, metabolic, inflammatory, and epigenetic pathways. 8-PN is one of the most potent phytoestrogens and is responsible for hops' estrogenic activities. Hops also inhibit aromatase activity, which is linked to 8-PN. The weak electrophile, XH, can activate the Keap1-Nrf2 pathway and turn on the synthesis of detoxification enzymes such as NAD(P)H-quinone oxidoreductase 1 and glutathione S-transferase. XH also alkylates IKK and NF-κB, resulting in anti-inflammatory activity. Antiobesity activities have been described for XH and XH-rich hop extracts likely through activation of AMP-activated protein kinase signaling pathways. Hop extracts modulate the estrogen chemical carcinogenesis pathway by enhancing P450 1A1 detoxification. The mechanism appears to involve activation of the aryl hydrocarbon receptor (AhR) by the AhR agonist, 6-PN, leading to degradation of the estrogen receptor. Finally, prenylated phenols from hops are known inhibitors of P450 1A1/2; P450 1B1; and P450 2C8, 2C9, and 2C19. Understanding the biological targets of hop dietary supplements and their phytoconstituents will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.


Assuntos
Flavonoides/química , Humulus/química , Proteínas Quinases Ativadas por AMP/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Feminino , Flavonoides/metabolismo , Flavonoides/farmacologia , Humanos , Humulus/metabolismo , Extratos Vegetais/química , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Pharmacol Rev ; 68(4): 1026-1073, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27677719

RESUMO

Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.

4.
J Nat Prod ; 81(4): 966-975, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29641206

RESUMO

Postmenopausal women are increasingly using botanicals for menopausal symptom relief due to the increased breast cancer risk associated with traditional estrogen therapy. The deleterious effects of estrogens are associated with estrogen receptor (ER)α-dependent proliferation, while ERß activation could enhance safety by opposing ERα effects. Three medicinal licorice species, Glycyrrhiza glabra ( G. glabra), G. uralensis, and G. inflata, were studied for their differential estrogenic efficacy. The data showed higher estrogenic potency for G. inflata in an alkaline phosphatase induction assay in Ishikawa cells (ERα) and an estrogen responsive element (ERE)-luciferase assay in MDA-MB-231/ß41 breast cancer cells (ERß). Bioassay-guided fractionation of G. inflata led to the isolation of 8-prenylapigenin (3). Surprisingly, a commercial batch of 3 was devoid of estrogenic activity. Quality control by MS and qNMR revealed an incorrect compound, 4'- O-methylbroussochalcone B (10), illustrating the importance of both structural and purity verification prior to any biological investigations. Authentic and pure 3 displayed 14-fold preferential ERß agonist activity. Quantitative analyses revealed that 3 was 33 times more concentrated in G. inflata compared to the other medicinal licorice extracts. These data suggest that standardization of G. inflata to 3 might enhance the safety and efficacy of G. inflata supplements used for postmenopausal women's health.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Flavonas/farmacologia , Glycyrrhiza/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Chalconas/farmacologia , Receptor beta de Estrogênio/agonistas , Estrogênios/metabolismo , Feminino , Humanos , Extratos Vegetais/farmacologia
5.
Chem Res Toxicol ; 30(1): 13-37, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27617882

RESUMO

Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose-response curve.


Assuntos
Citoproteção , Citotoxinas , Quinonas , Animais , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/toxicidade , Humanos , Quinonas/química , Quinonas/farmacologia , Quinonas/toxicidade
6.
Chem Res Toxicol ; 30(11): 2084-2092, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28985473

RESUMO

Many women consider botanical dietary supplements (BDSs) as safe alternatives to hormone therapy for menopausal symptoms. However, the effect of BDSs on breast cancer risk is largely unknown. In the estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens to 4-hydroxylated catechols, which are oxidized to genotoxic quinones that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed 2-hydroxylation represents a detoxification pathway. The current study evaluated the effects of red clover, a popular BDS used for women's health, and its isoflavones, biochanin A (BA), formononetin (FN), genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy estrogen metabolites (2-MeOE1, 4-MeOE1) were measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A) and ER-positive breast cancer cells (MCF-7) were derived from normal breast epithelial tissue and ER+ breast cancer tissue. Red clover extract (RCE, 10 µg/mL) and isoflavones had no effect on estrogen metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments downregulated CYP1A1 expression and enhanced genotoxic metabolism (4-MeOE1/CYP1B1 > 2-MeOE1/CYP1A1). Experiments with the isoflavones showed that the AhR agonists (BA, FN) preferentially induced CYP1B1 expression as well as 4-MeOE1. In contrast, the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated isoflavone-induced XRE-luciferase reporter activity and reversed GN and DZ induced downregulation of CYP1A1 expression. Overall, these studies show that red clover and its isoflavones have differential effects on estrogen metabolism in "normal" vs breast cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic metabolism, and the ER agonists downregulate the detoxification pathway. These data may suggest that especially breast cancer patients should avoid red clover and isoflavone based BDSs when making choices for menopausal symptom relief.


Assuntos
Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Suplementos Nutricionais/efeitos adversos , Estrogênios/metabolismo , Isoflavonas/efeitos adversos , Receptores de Hidrocarboneto Arílico/metabolismo , Trifolium/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/genética , Carcinogênese/metabolismo , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Suplementos Nutricionais/análise , Feminino , Humanos , Isoflavonas/análise , Isoflavonas/metabolismo , Células MCF-7
7.
J Nat Prod ; 80(8): 2284-2294, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28812892

RESUMO

Botanical dietary supplements contain multiple bioactive compounds that target numerous biological pathways. The lack of uniform standardization requirements is one reason that inconsistent clinical effects are reported frequently. The multifaceted biological interactions of active principles can be disentangled by a coupled pharmacological/phytochemical approach using specialized ("knock-out") extracts. This is demonstrated for hops, a botanical for menopausal symptom management. Employing targeted, adsorbent-free countercurrent separation, Humulus lupulus extracts were designed for pre- and postmenopausal women by containing various amounts of the phytoestrogen 8-prenylnaringenin (8-PN) and the chemopreventive constituent xanthohumol (XH). Analysis of their estrogenic (alkaline phosphatase), chemopreventive (NAD(P)H-quinone oxidoreductase 1 [NQO1]), and cytotoxic bioactivities revealed that the estrogenicity of hops is a function of 8-PN, whereas their NQO1 induction and cytotoxic properties depend on XH levels. Antagonization of the estrogenicity of 8-PN by elevated XH concentrations provided evidence for the interdependence of the biological effects. A designed postmenopausal hop extract was prepared to balance 8-PN and XH levels for both estrogenic and chemopreventive properties. An extract designed for premenopausal women contains reduced 8-PN levels and high XH concentrations to minimize estrogenic while retaining chemopreventive properties. This study demonstrates the feasibility of modulating the concentrations of bioactive compounds in botanical extracts for potentially improved efficacy and safety.


Assuntos
Estrogênios/metabolismo , Flavanonas/isolamento & purificação , Flavanonas/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/farmacocinética , Humulus/química , Fitoestrógenos/isolamento & purificação , Fitoestrógenos/farmacologia , Propiofenonas/isolamento & purificação , Propiofenonas/farmacocinética , Suplementos Nutricionais , Estrogênios/química , Feminino , Flavanonas/química , Flavonoides/química , Humanos , Estrutura Molecular , Fitoestrógenos/química , Propiofenonas/química , Saúde da Mulher
8.
Chem Res Toxicol ; 29(10): 1583-1590, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27636306

RESUMO

The release of the Women's Health Initiative (WHI) study in 2002 was a shock to the medical community. Hormone therapy (HT) had generally been considered to be highly beneficial for postmenopausal women since it was the gold standard for relief of menopausal symptoms (hot flashes, night sweats, vaginal atrophy) and it was thought to protect women from osteoporosis, heart disease, and cognitive decline and to generally improve quality of life. However, WHI showed a statistically significant increase in a number of disease states, including breast cancer, cardiovascular disease, and stroke. One problem with the WHI study was that the average age of women in the study was 63, which is considerably older than the age at which most women enter menopause (about 51). The timing hypothesis attempts to rationalize the effect of age on response to HT and risk of various diseases. The data suggests that younger women (50-60) may be protected from heart disease with only a slight increase in breast cancer risk. In contrast, older women (>65) are more susceptible to breast cancer and heart disease and should avoid HT. This Perspective on Statistical Trends evaluates the current data on HT and risk for chronic diseases as a function of age.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Terapia de Reposição de Estrogênios , Acidente Vascular Cerebral/tratamento farmacológico , Fatores Etários , Feminino , Humanos
9.
Chem Res Toxicol ; 29(7): 1142-50, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27269377

RESUMO

Humulus lupulus L. (hops) is a popular botanical dietary supplement used by women as a sleep aid and for postmenopausal symptom relief. In addition to its efficacy for menopausal symptoms, hops can also modulate the chemical estrogen carcinogenesis pathway and potentially protect women from breast cancer. In the present study, an enriched hop extract and the key bioactive compounds [6-prenylnarigenin (6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), and xanthohumol (XH)] were tested for their effects on estrogen metabolism in breast cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE1) were analyzed as biomarkers for the nontoxic P450 1A1 catalyzed 2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation pathways, respectively. The results indicated that the hop extract and 6-PN preferentially induced the 2-hydroxylation pathway in both cell lines. 8-PN only showed slight up-regulation of metabolism in MCF-7 cells, whereas IX and XH did not have significant effects in either cell line. To further explore the influence of hops and its bioactive marker compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin O-dealkylase (EROD) activity were measured. The results correlated with the metabolism data and showed that hop extract and 6-PN preferentially enhanced P450 1A1 mRNA expression and increased P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation by the isolated compounds was tested using xenobiotic response element (XRE) luciferase construct transfected cells. 6-PN was found to be an AhR agonist that significantly induced XRE activation and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced XRE activity. 6-PN mediated induction of EROD activity was also inhibited by the AhR antagonist CH223191. These data show that the hop extract and 6-PN preferentially enhance the nontoxic estrogen 2-hydroxylation pathway through AhR mediated up-regulation of P450 1A1, which further emphasizes the importance of standardization of botanical extracts to multiple chemical markers for both safety and desired bioactivity.


Assuntos
Citocromo P-450 CYP1A1/biossíntese , Estrogênios/metabolismo , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Feminino , Humanos , Humulus/química , Hidroxilação , RNA Mensageiro/genética
10.
Chem Res Toxicol ; 28(8): 1584-94, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26134484

RESUMO

Estrogen chemical carcinogenesis involves 4-hydroxylation of estrone/estradiol (E1/E2) by P450 1B1, generating catechol and quinone genotoxic metabolites that cause DNA mutations and initiate/promote breast cancer. Inflammation enhances this effect by upregulating P450 1B1. The present study tested the three authenticated medicinal species of licorice [Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI)] used by women as dietary supplements for their anti-inflammatory activities and their ability to modulate estrogen metabolism. The pure compounds, liquiritigenin (LigF), its chalcone isomer isoliquiritigenin (LigC), and the GI-specific licochalcone A (LicA) were also tested. The licorice extracts and compounds were evaluated for anti-inflammatory activity by measuring inhibition of iNOS activity in macrophage cells: GI ≫ GG > GU and LigC ≅ LicA ≫ LigF. The Michael acceptor chalcone, LicA, is likely responsible for the anti-inflammatory activity of GI. A sensitive LC-MS/MS assay was employed to quantify estrogen metabolism by measuring 2-MeOE1 as nontoxic and 4-MeOE1 as genotoxic biomarkers in the nontumorigenic human mammary epithelial cell line, MCF-10A. GG, GU, and LigC increased 4-MeOE1, whereas GI and LicA inhibited 2- and 4-MeOE1 levels. GG, GU (5 µg/mL), and LigC (1 µM) also enhanced P450 1B1 expression and activities, which was further increased by inflammatory cytokines (TNF-α and IFN-γ). LicA (1, 10 µM) decreased cytokine- and TCDD-induced P450 1B1 gene expression and TCDD-induced xenobiotic response element luciferase reporter (IC50 = 12.3 µM), suggesting an antagonistic effect on the aryl hydrocarbon receptor, which regulates P450 1B1. Similarly, GI (5 µg/mL) reduced cytokine- and TCDD-induced P450 1B1 gene expression. Collectively, these data suggest that, of the three licorice species that are used in botanical supplements, GI represents the most promising chemopreventive licorice extract for women's health. Additionally, the differential effects of the Glycyrrhiza species on estrogen metabolism emphasize the importance of standardization of botanical supplements to species-specific bioactive compounds.


Assuntos
Neoplasias da Mama , Chalconas/farmacologia , Citocromo P-450 CYP1A1/genética , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glycyrrhiza/química , Cromatografia Líquida , Citocromo P-450 CYP1A1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Macrófagos/citologia , Modelos Biológicos , Preparações de Plantas/farmacologia , Especificidade da Espécie , Regulação para Cima/efeitos dos fármacos
11.
Chem Res Toxicol ; 28(11): 2130-41, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26473469

RESUMO

For the alleviation of menopausal symptoms, women frequently turn to botanical dietary supplements, such as licorice and hops. In addition to estrogenic properties, these botanicals could also have chemopreventive effects. We have previously shown that hops and its Michael acceptor xanthohumol (XH) induced the chemoprevention enzyme, NAD(P)H: quinone oxidoreductase 1 (NQO1), in vitro and in vivo. Licorice species could also induce NQO1, as they contain the Michael acceptors isoliquiritigenin (LigC) found in Glycyrrhiza glabra (GG), G. uralensis (GU), G. inflata (GI), and licochalcone A (LicA) which is only found in GI. These licorice species and hops induced NQO1 activity in murine hepatoma (Hepa1c1c7) cells; hops ≫ GI > GG ≅ GU. Similar to the known chemopreventive compounds curcumin (turmeric), sulforaphane (broccoli), and XH, LigC and LicA were active dose-dependently; sulforaphane ≫ XH > LigC > LicA ≅ curcumin ≫ liquiritigenin (LigF). Induction of the antioxidant response element luciferase in human hepatoma (HepG2-ARE-C8) cells suggested involvement of the Keap1-Nrf2 pathway. GG, GU, and LigC also induced NQO1 in nontumorigenic breast epithelial MCF-10A cells. In female Sprague-Dawley rats treated with GG and GU, LigC and LigF were detected in the liver and mammary gland. GG weakly enhanced NQO1 activity in the mammary tissue but not in the liver. Treatment with LigC alone did not induce NQO1 in vivo most likely due to its conversion to LigF, extensive metabolism, and its low bioavailability in vivo. These data show the chemopreventive potential of licorice species in vitro could be due to LigC and LicA and emphasize the importance of chemical and biological standardization of botanicals used as dietary supplements. Although the in vivo effects in the rat model after four-day treatment are minimal, it must be emphasized that menopausal women take these supplements for extended periods of time and long-term beneficial effects are quite possible.


Assuntos
Chalconas/farmacologia , Glycyrrhiza , NAD(P)H Desidrogenase (Quinona)/metabolismo , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Camundongos , Ratos Sprague-Dawley , Saúde da Mulher
13.
Curr Org Chem ; 18(1): 61-69, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25346613

RESUMO

The formation of quinone methides (QMs) from either direct 2-electron oxidation of 2- or 4-alkylphenols, isomerization of o-quinones, or elimination of a good leaving group could explain the cytotoxic/cytoprotective effects of several drugs, natural products, as well as endogenous compounds. For example, the antiretroviral drug nevirapine and the antidiabetic agent troglitazone both induce idiosyncratic hepatotoxicity through mechanisms involving quinone methide formation. The anesthetic phencyclidine induces psychological side effects potentially through quinone methide mediated covalent modification of crucial macromolecules in the brain. Selective estrogen receptor modulators (SERMs) such as tamoxifen, toremifene, and raloxifene are metabolized to quinone methides which could potentially contribute to endometrial carcinogenic properties and/or induce detoxification enzymes and enhance the chemopreventive effects of these SERMs. Endogenous estrogens and/or estrogens present in estrogen replacement formulations are also metabolized to catechols and further oxidized to o-quinones which can isomerize to quinone methides. Both estrogen quinoids could cause DNA damage which could enhance hormone dependent cancer risk. Natural products such as the food and flavor agent eugenol can be directly oxidized to a quinone methide which may explain the toxic effects of this natural compound. Oral toxicities associated with chewing areca quid could be the result of exposure to hydroxychavicol through initial oxidation to an o-quinone which isomerizes to a p-quinone methide. Similar o-quinone to p-quinone methide isomerization reactions have been reported for the ubiquitous flavonoid quercetin which needs to be taken into consideration when evaluating risk-benefit assessments of these natural products. The resulting reaction of these quinone methides with proteins, DNA, and/or resulting modulation of gene expression may explain the toxic and/or beneficial effects of the parent compounds.

14.
Biomed Chromatogr ; 28(6): 729-34, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24861737

RESUMO

Concerned about the safety of conventional estrogen replacement therapy, women are using botanical dietary supplements as alternatives for the management of menopausal symptoms such as hot flashes. Before botanical dietary supplements can be evaluated clinically for safety and efficacy, botanically authenticated and standardized forms are required. To address the demand for a standardized, estrogenic botanical dietary supplement, an extract of hops (Humulus lupulus L.) was developed. Although valued in the brewing of beer, hop extracts are used as anxiolytics and hypnotics and have well-established estrogenic constituents. Starting with a hop cultivar used in the brewing industry, spent hops (the residue remaining after extraction of bitter acids) were formulated into a botanical dietary supplement that was then chemically and biologically standardized. Biological standardization utilized the estrogen-dependent induction of alkaline phosphatase in the Ishikawa cell line. Chemical standardization was based on the prenylated phenols in hops that included estrogenic 8-prenylnaringenin, its isomer 6-prenylnaringenin, and pro-estrogenic isoxanthohumol and its isomeric chalcone xanthohumol, all of which were measured using high-performance liquid chromatography-tandem mass spectrometry. The product of this process was a reproducible botanical extract suitable for subsequent investigations of safety and efficacy.


Assuntos
Suplementos Nutricionais/normas , Estrogênios/química , Estrogênios/normas , Humulus/química , Extratos Vegetais/química , Extratos Vegetais/normas , Linhagem Celular , Suplementos Nutricionais/análise , Estrogênios/farmacologia , Feminino , Humanos , Extratos Vegetais/farmacologia
15.
Planta Med ; 79(7): 538-53, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23408273

RESUMO

Menopausal women suffer from a variety of symptoms, including hot flashes and night sweats, which can affect quality of life. Although it has been the treatment of choice for relieving these symptoms, hormone therapy has been associated with increased breast cancer risk leading many women to search for natural, efficacious, and safe alternatives such as botanical supplements. Data from clinical trials suggesting that botanicals have efficacy for menopausal symptom relief have been controversial, and several mechanisms of action have been proposed including estrogenic, progestogenic, and serotonergic pathways. Plant extracts with potential estrogenic activities include soy, red clover, kudzu, hops, licorice, rhubarb, yam, and chasteberry. Botanicals with reported progestogenic activities are red clover, hops, yam, and chasteberry. Serotonergic mechanisms have also been proposed since women taking antidepressants often report a reduction in hot flashes and night sweats. Black cohosh, kudzu, kava, licorice, and dong quai all either have reported 5-hydroxytryptamine receptor 7 ligands or inhibit serotonin reuptake, therefore have potential serotonergic activities. Understanding the mechanisms of action of these natural remedies used for women's health could lead to more efficacious formulations and to the isolation of active components which have the potential of becoming effective medications in the future.


Assuntos
Magnoliopsida , Menopausa , Fitoestrógenos/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , Progestinas/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Feminino , Fogachos/tratamento farmacológico , Humanos , Ligantes , Fitoestrógenos/uso terapêutico , Extratos Vegetais/uso terapêutico , Plantas Medicinais , Progestinas/uso terapêutico , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Sudorese/efeitos dos fármacos , Saúde da Mulher
16.
Sci Rep ; 13(1): 8734, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253812

RESUMO

Breast cancer risk continues to increase post menopause. Anti-estrogen therapies are available to prevent postmenopausal breast cancer in high-risk women. However, their adverse effects have reduced acceptability and overall success in cancer prevention. Natural products such as hops (Humulus lupulus) and three pharmacopeial licorice (Glycyrrhiza) species have demonstrated estrogenic and chemopreventive properties, but little is known regarding their effects on aromatase expression and activity as well as pro-proliferation pathways in human breast tissue. We show that Gycyrrhiza inflata (GI) has the highest aromatase inhibition potency among these plant extracts. Moreover, phytoestrogens such as liquiritigenin which is common in all licorice species have potent aromatase inhibitory activity, which is further supported by computational docking of their structures in the binding pocket of aromatase. In addition, GI extract and liquiritigenin suppress aromatase expression in the breast tissue of high-risk postmenopausal women. Although liquiritigenin has estrogenic effects in vitro, with preferential activity through estrogen receptor (ER)-ß, it reduces estradiol-induced uterine growth in vivo. It downregulates RNA translation, protein biosynthesis, and metabolism in high-risk women's breast tissue. Finally, it reduces the rate of MCF-7 cell proliferation, with repeated dosing. Collectively, these data suggest that liquiritigenin has breast cancer prevention potential for high-risk postmenopausal women.


Assuntos
Neoplasias da Mama , Glycyrrhiza , Feminino , Humanos , Neoplasias da Mama/prevenção & controle , Neoplasias da Mama/metabolismo , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Estrogênios/metabolismo , Glycyrrhiza/química , Receptor beta de Estrogênio/metabolismo , Biossíntese de Proteínas
17.
Phytochemistry ; 214: 113789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482264

RESUMO

In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.


Assuntos
Neoplasias da Mama , Isoflavonas , Trifolium , Feminino , Humanos , Trifolium/química , Trifolium/metabolismo , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Estrogênios , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias da Mama/tratamento farmacológico
18.
Chem Res Toxicol ; 25(7): 1472-83, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22642258

RESUMO

The bioactivation of both endogenous and equine estrogens to electrophilic quinoid metabolites has been postulated as a contributing factor in carcinogenic initiation and/or promotion in hormone sensitive tissues. Bearing structural resemblance to estrogens, extensive studies have shown that many selective estrogen receptor modulators (SERMs) are subject to similar bioactivation pathways. Lasofoxifene (LAS), a third generation SERM which has completed phase III clinical trials for the prevention and treatment of osteoporosis, is currently approved in the European Union for this indication. Previously, Prakash et al. (Drug Metab. Dispos. (2008) 36, 1218-1226) reported that similar to estradiol, two catechol regioisomers of LAS are formed as primary oxidative metabolites, accounting for roughly half of the total LAS metabolism. However, the potential for further oxidation of these catechols to electrophilic o-quinones has not been reported. In the present study, LAS was synthesized and its oxidative metabolism investigated in vitro under various conditions. Incubation of LAS with tyrosinase, human liver microsomes, or rat liver microsomes in the presence of GSH as a trapping reagent resulted in the formation of two mono-GSH and two di-GSH catechol conjugates which were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Similar conjugates were also detected in incubations with P450 3A4, P450 2D6, and P450 1B1 supersomes. Interestingly, these conjugates were also detected as major metabolites when compared to competing detoxification pathways such as glucuronidation and methylation. The 7-hydroxylasofoxifene (7-OHLAS) catechol regioisomer was also synthesized and oxidized either chemically or enzymatically to an o-quinone that was shown to form depurinating adducts with DNA. Collectively, these data show that analogous to estrogens, LAS is oxidized to catechols and o-quinones which could potentially contribute to in vivo toxicity for this SERM.


Assuntos
Estradiol/metabolismo , Pirrolidinas/metabolismo , Quinonas/metabolismo , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Tetra-Hidronaftalenos/metabolismo , Animais , Catecóis/química , Catecóis/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , DNA/química , Estradiol/química , Glutationa/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Pirrolidinas/química , Quinonas/química , Ratos , Moduladores Seletivos de Receptor Estrogênico/química , Estereoisomerismo , Espectrometria de Massas em Tandem , Tetra-Hidronaftalenos/química
19.
Drug Discov Today Dis Mech ; 9(1)2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24223609

RESUMO

Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women's health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism.

20.
Chem Res Toxicol ; 24(12): 2153-66, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-21910479

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are suspect human lung carcinogens and can be metabolically activated to remote quinones, for example, benzo[a]pyrene-1,6-dione (B[a]P-1,6-dione) and B[a]P-3,6-dione by the action of either P450 monooxygenase or peroxidases, and to non-K region o-quinones, for example B[a]P-7,8-dione, by the action of aldo keto reductases (AKRs). B[a]P-7,8-dione also structurally resembles 4-hydroxyequilenin o-quinone. These three classes of quinones can redox cycle, generate reactive oxygen species (ROS), and produce the mutagenic lesion 8-oxo-dGuo and may contribute to PAH- and estrogen-induced carcinogenesis. We compared the ability of a complete panel of human recombinant AKRs to catalyze the reduction of PAH o-quinones in the phenanthrene, chrysene, pyrene, and anthracene series. The specific activities for NADPH-dependent quinone reduction were often 100-1000 times greater than the ability of the same AKR isoform to oxidize the cognate PAH-trans-dihydrodiol. However, the AKR with the highest quinone reductase activity for a particular PAH o-quinone was not always identical to the AKR isoform with the highest dihydrodiol dehydrogenase activity for the respective PAH-trans-dihydrodiol. Discrete AKRs also catalyzed the reduction of B[a]P-1,6-dione, B[a]P-3,6-dione, and 4-hydroxyequilenin o-quinone. Concurrent measurements of oxygen consumption, superoxide anion, and hydrogen peroxide formation established that ROS were produced as a result of the redox cycling. When compared with human recombinant NAD(P)H:quinone oxidoreductase (NQO1) and carbonyl reductases (CBR1 and CBR3), NQO1 was a superior catalyst of these reactions followed by AKRs and last CBR1 and CBR3. In A549 cells, two-electron reduction of PAH o-quinones causes intracellular ROS formation. ROS formation was unaffected by the addition of dicumarol, suggesting that NQO1 is not responsible for the two-electron reduction observed and does not offer protection against ROS formation from PAH o-quinones.


Assuntos
Oxirredutases do Álcool/metabolismo , Equilenina/análogos & derivados , NAD(P)H Desidrogenase (Quinona)/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Quinonas/metabolismo , Oxirredutases do Álcool/genética , Aldeído Redutase , Aldo-Ceto Redutases , Benzopirenos/química , Benzopirenos/toxicidade , Biocatálise , Linhagem Celular Tumoral , Equilenina/química , Equilenina/metabolismo , Equilenina/toxicidade , Humanos , Isomerismo , NAD(P)H Desidrogenase (Quinona)/genética , Oxirredução/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Quinonas/química , Quinonas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA