Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur J Neurosci ; 55(8): 1917-1933, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393704

RESUMO

µ-opioid receptors (MOPr) play a critical role in social play, reward and pain, in a sex- and age-dependent manner. There is evidence to suggest that sex and age differences in brain MOPr density may be responsible for this variability; however, little is known about the factors driving these differences in cerebral MOPr density. Emerging evidence highlights gut microbiota's critical influence and its bidirectional interaction with the brain on neurodevelopment. Therefore, we aimed to determine the impact of gut microbiota on MOPr density in male and female brains at different developmental stages. Quantitative [3 H]DAMGO autoradiographic binding was carried out in the forebrain of male and female conventional (CON) and germ-free (GF) rats at postnatal days (PND) 8, 22 and 116-150. Significant 'microbiota status X sex', 'age X brain region' interactions and microbiota status- and age-dependent effects on MOPr binding were uncovered. Microbiota status influenced MOPr levels in males but not females, with higher MOPr levels observed in GF versus CON rats overall regions and age groups. In contrast, no overall sex differences were observed in GF or CON rats. Interestingly, within-age planned comparison analysis conducted in frontal cortical and brain regions associated with reward revealed that this microbiota effect was restricted only to PND22 rats. Thus, this pilot study uncovers the critical sex-dependent role of gut microbiota in regulating cerebral MOPr density, which is restricted to the sensitive developmental period of weaning. This may have implications in understanding the importance of microbiota during early development on opioid signalling and associated behaviours.


Assuntos
Microbiota , Receptores Opioides mu , Analgésicos Opioides , Animais , Feminino , Masculino , Projetos Piloto , Prosencéfalo/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores Opioides mu/metabolismo
2.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216163

RESUMO

Perturbations of cholesterol metabolism have been linked to neurodegenerative diseases. Glia-neuron crosstalk is essential to achieve a tight regulation of brain cholesterol trafficking. Adequate cholesterol supply from glia via apolipoprotein E-containing lipoproteins ensures neuronal development and function. The lipolysis-stimulated lipoprotein receptor (LSR), plays an important role in brain cholesterol homeostasis. Aged heterozygote Lsr+/- mice show altered brain cholesterol distribution and increased susceptibility to amyloid stress. Since LSR expression is higher in astroglia as compared to neurons, we sought to determine if astroglial LSR deficiency could lead to cognitive defects similar to those of Alzheimer's disease (AD). Cre recombinase was activated in adult Glast-CreERT/lsrfl/fl mice by tamoxifen to induce astroglial Lsr deletion. Behavioral phenotyping of young and old astroglial Lsr KO animals revealed hyperactivity during the nocturnal period, deficits in olfactory function affecting social memory and causing possible apathy, as well as visual memory and short-term working memory problems, and deficits similar to those reported in neurodegenerative diseases, such as AD. Furthermore, GFAP staining revealed astroglial activation in the olfactory bulb. Therefore, astroglial LSR is important for working, spatial, and social memory related to sensory input, and represents a novel pathway for the study of brain aging and neurodegeneration.


Assuntos
Astrócitos/metabolismo , Transtornos da Memória/metabolismo , Memória de Curto Prazo , Receptores de Lipoproteínas/metabolismo , Olfato , Animais , Colesterol/metabolismo , Transtornos da Memória/genética , Camundongos , Receptores de Lipoproteínas/genética
3.
J Nutr ; 151(5): 1311-1319, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693927

RESUMO

BACKGROUND: A low-protein diet can induce compensatory intake of excess energy. This must be better evaluated to anticipate the obesogenic risk that may result from the dietary recommendations for reducing animal protein consumption. OBJECTIVES: We aimed to further characterize the behavioral and physiological responses to a reduction in dietary protein and to identify the determinants of protein appetite. METHODS: Thirty-two male Wistar rats [4 wk old, (mean ± SEM) 135 ± 32 g body weight] were fed a low-protein (LP; 6% energy value) or normal-protein (NP; 20%) diet for 8 wk. Food intake and body mass were measured during the entire intervention. During self-selection sessions after 4 wk of experimental diets, we evaluated rat food preference between LP, NP, or high-protein (HP; 55%) pellets. At the end of the experiment, we assessed their hedonic response [ultrasonic vocalizations (USVs)] and c-Fos neuronal activation in the olfactory tubercle and nucleus accumbens (NAcc) associated with an LP or HP meal. RESULTS: Rats fed an LP diet had greater food intake (24%), body weight (5%), and visceral adiposity (30%) than NP rats. All LP rats and half of the NP rats showed a nearly exclusive preference for HP pellets during self-selection sessions, whereas the other half of the NP rats showed no preference. This suggests that the appetite for proteins is driven not only by a low protein status but also by individual traits in NP rats. LP or HP meal induced similar USV emission and similar neuronal activation in the NAcc in feed-deprived LP and NP rats, showing no specific response linked to protein appetite. CONCLUSIONS: Protein appetite in rats is driven by low protein status or individual preferences in rats receiving adequate protein amounts. This must be considered and further analyzed, in the context of current recommendations for protein intake reduction.


Assuntos
Apetite/efeitos dos fármacos , Dieta com Restrição de Proteínas , Proteínas Alimentares/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Fenótipo , Adiposidade , Animais , Peso Corporal , Proteínas Alimentares/administração & dosagem , Gordura Intra-Abdominal , Masculino , Carne , Núcleo Accumbens , Obesidade , Tubérculo Olfatório , Ratos Wistar
4.
Eur J Neurosci ; 51(6): 1403-1418, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31465599

RESUMO

The olfactory mucosa (OM) is the primary site of odorant detection, and its axonal projections relay information to brain structures for signal processing. We have previously observed that olfactory function can be affected during a prolonged stress challenge in Wistar rats. The stress response is a neuroendocrine retro-controlled loop allowing pleiotropic adaptive tissue alterations, which are partly mediated through the release of glucocorticoid hormones. We hypothesised that, as part of their wide-ranging pleiotropic effects, glucocorticoids might affect the first step of olfactory detection. To study this, we used a number of approaches ranging from the molecular detection and functional characterisation of glucocorticoid receptors (GRs) in OM cells, to the study of GR acute activation in vivo at the molecular, electrophysiological and behavioural levels. In contrast to previous reports, where GR was reported to be exclusive in olfactory sensory neurones, we located functional GR expression mostly in olfactory ensheathing cells. Dexamethasone (2 mg/kg) was injected intraperitoneally to activate GR in vivo, and this led to functional odorant electrophysiological response (electro-olfactogram) and OM gene expression changes. In a habituation/cross-habituation test of olfactory sensitivity, we observed that DEX-treated rats exhibited higher responsiveness to a complex odorant mixture. These findings support the idea that olfactory perception is altered in stressed animals, as glucocorticoids might enhance odour detection, starting at the first step of detection.


Assuntos
Glucocorticoides , Mucosa Olfatória , Animais , Glucocorticoides/farmacologia , Ratos , Ratos Wistar , Receptores de Glucocorticoides , Olfato
5.
Anim Cogn ; 23(5): 881-891, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32394146

RESUMO

Early sensory experience, such as exposure to maternal or other environmental factors, is considered to influence neurocognitive development and behaviors. In many species, exposure to odorants during pregnancy or lactation impacts the morpho-functional development of the olfactory circuitry with changes in olfactory sensitivity, feeding behavior and food preferences at birth or later. However, few studies have investigated the impact of a perinatal exposure to odorants on the anxiety-like behavior of animals to stressfull stimuli. Here, we exposed mice to heptaldehyde (HEP) during pregnancy and lactation and measured the anxiety-like behavior of their offspring to stress-inducing novel stimuli at weaning in presence or absence of odorants. We applied a combined social and maternal separation as a stressor and measured the anxiety-like behavior in an open field (OF) in presence of two odorants, HEP or α-pinene (AP) as a control odorant. Although the presence of the odorant during the social separation did not influence anxiety-like behavior, we found that, if mice born to non-odorized mothers exhibited a decreased exploratory behavior in the presence of both odorants, the effect was restricted to AP for the mice perinatally exposed to HEP. These results show that anxiety-like behaviors during a stress-inducing event could be reduced by the presence of a familiar odorant. We propose that the recall of an early olfactory experience could contribute to the improvement of animal welfare in various situations associated with husbandry practices.


Assuntos
Privação Materna , Odorantes , Animais , Ansiedade , Comportamento Animal , Exposição Ambiental , Feminino , Camundongos , Gravidez , Desmame
6.
Eur J Neurosci ; 45(12): 1613-1622, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452078

RESUMO

Most of biological variables follow a daily rhythm. It holds true as well for sensory capacities as two decades of research have demonstrated that the odorant induced activity in the olfactory bulbs oscillates during the day. Olfactory bulbs are the first central nervous system structures, which receive inputs from the olfactory neurons located in the nose olfactory epithelium in vertebrates. So far, data on variation in odorant detection in the olfactory epithelium throughout the day are missing. Using electroolfactogram recordings in rats housed under daily light and dark cycles, we found that the olfactory epithelium responsiveness varies during the day with a maximum in the beginning of the light phase. This fluctuation was consistent with cycling of transduction pathway gene expression in the olfactory epithelium examined by qPCR. It was also consistent with the levels of two transduction pathway proteins (olfactory-type G protein and adenylyl cyclase III) examined by western blot. Daily variations were also observed at the level of olfactory sensory neurons responses recorded by patch-clamp. To rule out a potential effect of the feeding status of the animal, we examined the variation in odorant response in starved animals during the day. We observed a similar pattern to ad libidum fed animals. Taken together, our results reveal that the olfactory epithelium sensitivity varies during the day in part due to modulation of the very first step of odorant detection.


Assuntos
Ritmo Circadiano , Mucosa Olfatória/fisiologia , Percepção Olfatória , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Masculino , Bulbo Olfatório/fisiologia , Mucosa Olfatória/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
7.
Nucleic Acids Res ; 41(Database issue): D1083-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23087376

RESUMO

The International Union of Basic and Clinical Pharmacology (IUPHAR) database, IUPHAR-DB (http://www.iuphar-db.org) is an open access, online database providing detailed, expert-driven annotation of the primary literature on human and rodent receptors and other drug targets, together with the substances that act on them. The present release includes information on the products of 646 genes from four major protein classes (G protein-coupled receptors, nuclear hormone receptors, voltage- and ligand-gated ion channels) and ∼3180 bioactive molecules (endogenous ligands, licensed drugs and key pharmacological tools) that interact with them. We have described previously the classification and curation of data for small molecule ligands in the database; in this update we have annotated 366 endogenous peptide ligands with their amino acid sequences, post-translational modifications, links to precursor genes, species differences and relationships with other molecules in the database (e.g. those derived from the same precursor). We have also matched targets with their endogenous ligands (peptides and small molecules), with particular attention paid to identifying bioactive peptide ligands generated by post-translational modification of precursor proteins. Other improvements to the database include enhanced information on the clinical relevance of targets and ligands in the database, more extensive links to other databases and a pilot project for the curation of enzymes as drug targets.


Assuntos
Bases de Dados de Compostos Químicos , Canais Iônicos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Inibidores Enzimáticos/química , Enzimas/química , Enzimas/efeitos dos fármacos , Enzimas/genética , Humanos , Internet , Canais Iônicos/química , Canais Iônicos/genética , Lanosterol/biossíntese , Ligantes , Camundongos , Anotação de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Preparações Farmacêuticas/química , Farmacologia , Ratos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
8.
Eur J Neurosci ; 40(11): 3663-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25257581

RESUMO

The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate 'INI' mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific.


Assuntos
Afeto/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Processamento Alternativo , Animais , Ritmo Circadiano/fisiologia , Corticosterona/sangue , Depressão/genética , Depressão/metabolismo , Medo/fisiologia , Técnicas de Introdução de Genes , Masculino , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Edição de RNA , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismo
9.
Front Behav Neurosci ; 17: 1089631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815182

RESUMO

Rats produce ultrasonic vocalisation (USVs) that are classified into different types, based on their average frequency. In pups 40 kHz USVs are produced upon social isolation, and in adults USVs can be associated with affective states and specific behavioural patterns (i.e., appetitive 50 kHz vocalisations of frequency range 30-100 kHz, or aversive 20 kHz vocalisations of frequency range 18-30 kHz). Generally, USVs of frequency around 50 kHz are linked to activation of brain reward pathways, during anticipation or experience of rewarding stimuli. Previous studies have described several subtypes of 50 kHz USVs, according to their acoustic properties. We asked whether USV production might be relevant to feeding behaviour. We recorded USVs from 14-week old adult rats during the satisfaction of a physiological need: refeeding following mild food deprivation (17 h overnight fast). We analysed a 10 min consummatory phase, preceded by a 10 min anticipatory phase, as a control for the experimental meal. Following identification of USV subtypes, we applied frequentist and Bayesian (Monte Carlo shuffling) statistical analyses to investigate the relationship between USV emission and rat behaviour. We found that it was not total USV quantity that varied in response to food consumption, but the subtype of USV produced. Most importantly we found that rats who feed tend to produce flat USVs of a frequency around 40 kHz. Beyond the previous reports of circumstantial association feeding-flat USVs, our observation directly correlate vocalisation and ingestive behaviour. Our study highlights that, in addition to quantification of the production rate, study of USV subtypes might inform us further on rat consummatory behaviour. Since this vocalisation behaviour can have a communicative purpose, those findings also illustrate nutrition studies might benefit from considering the possible social dimension of feeding behaviour.

10.
Sci Rep ; 12(1): 15323, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097035

RESUMO

'Tickling' induces positive affective states in laboratory rats as evidenced by the production of 50-kHz ultrasonic vocalisations (USVs), although this has mostly been investigated in males. Juvenile rats emit distinctive 50-kHz USV subtypes. Frequency-modulated (FM) 50-kHz USVs are thought to be associated with positive affect and flat 50-kHz USVs with social communication. FM and flat USVs are produced by both sexes during tickling, but it is unclear whether these calls are produced in relation to particular play-related behaviours, and whether USV subtypes are used in a sexually dimorphic manner during tickling. We tested the hypotheses that FM USVs are associated with tickle-induced play behaviours in a sex-specific way, and that flat USVs are associated with non-play activities. Rats were allocated to one of two treatment groups: tickling (tickled, n = 16/sex) or no hand contact (control, n = 16/sex). Play behaviours (hopping, darting and hand approaches) and FM and flat USVs emitted during the testing session were quantified for each rat, with the frequency of FM and flat USVs made in anticipation of, and during, each behaviour analysed. In females, play behaviours were associated with more flat USVs than in males (before and during; p < 0.001), irrespective of treatment. FM USVs were paired with hopping and darting (before and during; p < 0.001), and in anticipation of hand approaches (p < 0.001) in both tickled females and males compared to controls (both sexes) suggesting that FM USVs are linked with play behaviour. The higher call rate of flat USVs paired with play behaviour in females suggests that there may be sex differences in the role of flat USVs during play. This result is evidence of sex differences in tickle-induced behaviours and has implications for our understanding of the function of different USVs in juvenile female and male rats.


Assuntos
Caracteres Sexuais , Vocalização Animal , Animais , Feminino , Masculino , Ratos , Ultrassom
11.
Biomedicines ; 10(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35625863

RESUMO

Food odour is a potent stimulus of food intake. Odour coding in the brain occurs in synergy or competition with other sensory information and internal signals. For eliciting feeding behaviour, food odour coding has to gain signification through enrichment with additional labelling in the brain. Since the ventral striatum, at the crossroads of olfactory and reward pathways, receives a rich dopaminergic innervation, we hypothesized that dopamine plays a role in food odour information processing in the ventral striatum. Using single neurones recordings in anesthetised rats, we show that some ventral striatum neurones respond to food odour. This neuronal network displays a variety of responses (excitation, inhibition, rhythmic activity in phase with respiration). The localization of recorded neurones in a 3-dimensional brain model suggests the spatial segregation of this food-odour responsive population. Using local field potentials recordings, we found that the neural population response to food odour was characterized by an increase of power in the beta-band frequency. This response was modulated by dopamine, as evidenced by its depression following administration of the dopaminergic D1 and D2 antagonists SCH23390 and raclopride. Our results suggest that dopamine improves food odour processing in the ventral striatum.

12.
F1000Res ; 11: 1053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36636473

RESUMO

Rat tickling is a heterospecific interaction for experimenters to mimic the interactions of rat play, where they produce 50 kHz ultrasonic vocalisations (USV), symptoms of positive affect; tickling can improve laboratory rat welfare. The standard rat tickling protocol involves gently pinning the rat in a supine position. However, individual response to this protocol varies. This suggests there is a risk that some rats may perceive tickling as only a neutral experience, while others as a positive one, depending on how tickling is performed. Based on our research experiences of the standard tickling protocol we have developed a playful handling (PH) protocol, with reduced emphasis on pinning, intended to mimic more closely the dynamic nature of play. We will test whether our PH protocol gives rise to more uniform increases in positive affect across individuals relative to protocols involving pinning. We will compare the response of juvenile male and female Wistar rats as: Control (hand remains still against the side of the test arena), P0 (PH with no pinning), P1 (PH with one pin), P4 (PH with four pins). P1 and P4 consist of a background of PH, with treatments involving administration of an increasing dosage of pinning per PH session. We hypothesise that rats exposed to handling protocols that maximise playful interactions (where pinning number per session decreases) will show an overall increase in total 50 kHz USV as an indicator of positive affect, with less variability. We will explore whether behavioural and physiological changes associated with alterations in PH experience are less variable. We propose that maximising the numbers of rats experiencing tickling as a positive experience will reduce the variation in response variables affected by tickling and increase the repeatability of research where tickling is applied either as a social enrichment or as a treatment.


Assuntos
Bem-Estar do Animal , Interação Humano-Animal , Ratos Wistar , Animais , Feminino , Masculino , Ratos , Ultrassom , Vocalização Animal
13.
Dev Neurobiol ; 81(2): 149-163, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389811

RESUMO

Oxytocin (OT) is a developmentally important neuropeptide recognized to play a dominant role in social functioning and stress-related behaviors, in a sex-dependent manner. Nonetheless, the underlining factors driving OT and OT receptor (OTR) early brain development remain unclear. Recent evidence highlight the critical influence of gut microbiota and its bidirectional interaction with the brain on neurodevelopment via the gut microbiota-brain axis. Therefore, we aimed to determine the impact of gut microbiota on the OTR system of the rat brain at different developmental stages in a pilot study. Quantitative OTR [125 I]-OVTA autoradiographic binding was carried out in the forebrain of male and female conventional (CON) and germ-free (GF) rats at postnatal days (PND) 8, 22, and 116-150. OTR binding was also assessed in the eyes of PND 1 and PND 4 GF female rats. Significant "microbiota × sex × region" interaction and age-dependent effects on OTR binding were demonstrated. Microbiota status influenced OTR levels in males but not females with higher levels of OTR observed in GF versus CON rats in the cingulate, prelimbic, and lateral/medial/ventral orbital cortex, and septum across all age groups, while sex differences were observed in GF, but not in CON rats. Interestingly, OTRs present in the eyes of CON rats were abolished in GF rats. This is the first study to uncover a sex-specific role of gut microbiota on the central OTR system, which may have implications in understanding the developmental neuroadaptations critical for behavioral regulation and the etiology of certain neurodevelopmental disorders.


Assuntos
Microbioma Gastrointestinal , Ocitocina/química , Receptores de Ocitocina , Animais , Feminino , Masculino , Projetos Piloto , Prosencéfalo/metabolismo , Ratos
14.
BMC Cancer ; 9: 330, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19758455

RESUMO

BACKGROUND: Endometrial cancer is the most common gynaecological malignancy; risk factors include exposure to oestrogens and high body mass index. Expression of enzymes involved in biosynthesis of oestrogens and prostaglandins (PG) is often higher in endometrial cancers when compared with levels detected in normal endometrium. Oestrogens bind one of two receptors (ERalpha and ERbeta) encoded by separate genes. The full-length receptors function as ligand-activated transcription factors; splice variant isoforms of ERbeta lacking a ligand-binding domain have also been described. PGs act in an autocrine or paracrine manner by binding to specific G-protein coupled receptors. METHODS: We compared expression of ERs, progesterone receptor (PR) and cyclooxygenase-2 (COX-2) in stage 1 endometrial adenocarcinomas graded as well (G1), moderately (G2) or poorly (G3) differentiated (n >or= 10 each group) using qRTPCR, single and double immunohistochemistry. We used endometrial adenocarcinoma cell lines to investigate the impact of PGF2alpha on expression of ERs and PR. RESULTS: Full length ERbeta (ERbeta1) and two ERbeta variants (ERbeta2, ERbeta5) were expressed in endometrial cancers regardless of grade and the proteins were immunolocalised to the nuclei of cells in both epithelial and stromal compartments. Immunoexpression of COX-2 was most intense in cells that were ERalphaneg/low. Expression of PR in endometrial adenocarcinoma (Ishikawa) cell lines and tissues broadly paralleled that of ERalpha. Treatment of adenocarcinoma cells with PGF2alpha reduced expression of ERalpha but had no impact on ERbeta1. Cells incubated with PGF2alpha were unable to increase expression of PR mRNA when they were incubated with E2. CONCLUSION: We have demonstrated that ERbeta5 protein is expressed in stage 1 endometrial adenocarcinomas. Expression of three ERbeta variants, including the full-length protein is not grade-dependent and most cells in poorly differentiated cancers are ERbetapos/ERalphaneg. We found evidence of a link between COX-2, its product PGF2alpha, and expression of ERalpha and PR that sheds new light on the cross talk between steroid and PG signalling pathways in this disease.


Assuntos
Dinoprosta/metabolismo , Neoplasias do Endométrio/genética , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Adulto , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprosta/genética , Neoplasias do Endométrio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Variação Genética , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
15.
PLoS One ; 14(6): e0212829, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188832

RESUMO

Most associative learning tests in rodents use negative stimuli, such as electric shocks. We investigated if young rats can learn to associate the presence of an odour with the experience of being tickled (i.e. using an experimenter's hand to mimic rough-and-tumble play), shown to elicit 50 kHz ultrasonic vocalisations (USVs), which are indicative of positive affect. Male, pair-housed Wistar rats (N = 24) were all exposed to two neutral odours (A and B) presented in a perforated container on alternate days in a test arena. Following 60s of exposure, the rats were either tickled on days when odour A (n = 8) or odour B (n = 8) was present, or never tickled (n = 8). When tickled, rats produced significantly more 50 kHz USVs compared to the days when not being tickled, and compared to control rats. The level of anticipatory 50 kHz USVs in the 60s prior to tickling did not differ significantly between the tickled and control rats. As a retrieval test following the odour conditioning, rats were exposed successively in the same arena to three odours: an unknown neutral odour, extract of fox faeces, and either odours A or B. Compared to controls, 50 kHz USVs of tickled rats increased when exposed to the odour they had previously experienced when tickled, indicating that these rats had learned to associate the odour with the positive experience of being tickled. In a test with free access for 5 min to both arms of a T-maze, each containing one of the odours, rats tickled with odour A spent more time in the arm with this odour. This work is the first to test in a fully balanced design whether rats can learn to associate an odour with tickling, and indicates that positive odour conditioning has potential to be used as an alternative to negative conditioning tests.


Assuntos
Condicionamento Psicológico , Aprendizagem , Odorantes , Estimulação Física , Animais , Masculino , Ratos , Ratos Wistar , Ultrassom
16.
Hum Reprod ; 23(12): 2782-90, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18775884

RESUMO

BACKGROUND: Estrogen receptor related beta (ERRbeta, ESRRB/NR3B2) is an orphan receptor that shares significant sequence homology with estrogen receptors ERalpha and ERbeta. ERR family members are reported to exhibit constitutive transcriptional activity; however, little is known about the biological function of ERRbeta. In an attempt to delineate its role, we examined expression of ERRbeta in normal human endometrium, a tissue that undergoes cyclic remodelling under the influence of estrogen and progesterone. METHODS: Well-characterized endometrial tissue (n = 31), including full-thickness biopsies, was obtained from women with regular menstrual cycles. RT-PCR was used to measure mRNA encoding ERRbeta, the peroxisome proliferator activated receptor gamma coactivators (PGC)-1alpha and beta and to determine whether ERRbeta splice variant mRNAs were expressed. ERRbeta was immunolocalized using both single and double antibody immunohistochemistry. RESULTS: Total ERRbeta mRNA appeared higher in proliferative phase samples but results did not reach significance. Transcripts corresponding to the long- and short-splice variants of ERRbeta as well as PGC1alpha and beta were detected but ERRbetaDelta10 was absent. ERRbeta protein was localized to cell nuclei within multiple endometrial cell types including the glands, stroma, endothelium and immune cells, including uterine natural killer (uNK) cells and macrophages. Fluorescent immunohistochemistry revealed that some cells co-expressed ERRbeta and ERalpha or ERbeta, for example, endothelial and uNK cells were ERRbeta+/ERbeta+. CONCLUSIONS: ERRbeta mRNA and protein are expressed in healthy human endometrium. Further studies are warranted to characterize the functional impact of ERRbeta on endometrial biology.


Assuntos
Endométrio/metabolismo , Ciclo Menstrual/fisiologia , Receptores de Estrogênio/biossíntese , Adulto , Proteínas de Transporte/biossíntese , Endométrio/citologia , Receptor alfa de Estrogênio/biossíntese , Receptor beta de Estrogênio/biossíntese , Feminino , Expressão Gênica , Proteínas de Choque Térmico/biossíntese , Humanos , Células Matadoras Naturais/metabolismo , Leucócitos/metabolismo , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Isoformas de Proteínas/biossíntese , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Fatores de Transcrição/biossíntese
18.
Toxicol Sci ; 86(2): 453-69, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15901911

RESUMO

Toxicogenomics has the potential to reveal the molecular pathways and cellular processes that mediate the adverse responses to a toxicant. However, the initial output of a toxicogenomic experiment often consists of large lists of genes whose expression is altered after toxicant exposure. To interpret gene expression changes in the context of underlying biological pathways and processes, new bioinformatics methods must be developed. We have used global gene expression profiling combined with an evaluation of Gene Ontology (GO) and pathway mapping tools as unbiased methods for identifying the molecular pathways and processes affected upon toxicant exposure. We chose to use the acute effects caused by the non-genotoxic carcinogen and peroxisome proliferator (PP) diethylhexylphthalate (DEHP) in the mouse liver as a model system. Consistent with what is known about the mode of action of DEHP, our GO analysis of transcript profiling data revealed a striking overrepresentation of genes associated with the peroxisomal cellular component, together with genes involved in carboxylic acid and lipid metabolism. Furthermore we reveal gene expression changes associated with additional biological functions, including complement activation, hemostasis, the endoplasmic reticulum overload response, and circadian rhythm. Together, these data reveal potential new pathways of PP action and shed new light on the mechanisms by which non-genotoxic carcinogens control hepatocyte hypertrophy and proliferation. We demonstrate that GO mapping can identify, in an unbiased manner, both known and novel DEHP-induced molecular changes in the mouse liver and is therefore a powerful approach for elucidating modes of toxicity based on toxicogenomic data.


Assuntos
Carcinógenos/toxicidade , Dietilexilftalato/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Proliferadores de Peroxissomos/toxicidade , Animais , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Toxicogenética/métodos
19.
Behav Brain Res ; 291: 36-45, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26003942

RESUMO

For most animal species, olfaction plays a paramount role in their perception of the environment. Odours are initially detected in neurons located in the olfactory mucosa. This tissue is regulated by several physiological signals and can be altered in pathology. A number of clinical studies suggest an association between depressive disorders and olfactory sensory loss. In rodents, depressive-like states can be observed in models of chronic stress. We tested the hypothesis that olfactory function might be altered in a rat model of depression, induced by chronic variable stress (CVS). While CVS rats exhibited several symptoms consistent with chronic stress exposure and depressive-like states (increased sucrose intake in sucrose preference test, increased immobility in forced swim test, hyperlocomotion), their odorant responses recorded at the olfactory mucosa level by electro-olfactogram were decreased. In addition we observed increased apoptosis markers in the olfactory mucosa using Western Blot. Our data are consistent with reduced olfactory capacities in a laboratory rat model of chronic stress and depression, in agreement with human clinical data; this warrants further mechanistic studies. Furthermore, this works raises the possibility that altered olfactory function might be a confounding factor in the behavioural testing of chronically stressed or depressed rats.


Assuntos
Transtorno Depressivo/fisiopatologia , Mucosa Olfatória/fisiopatologia , Olfato/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Apoptose/fisiologia , Doença Crônica , Transtorno Depressivo/patologia , Sacarose Alimentar , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Masculino , Atividade Motora/fisiologia , Neurônios/fisiologia , Mucosa Olfatória/patologia , Ratos Wistar , Estresse Psicológico/patologia , Natação/fisiologia
20.
Front Neurosci ; 9: 226, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161069

RESUMO

It has long been known that the behavior of an animal can be affected by odors from another species. Such interspecific effects of odorous compounds (allelochemics) are usually characterized according to who benefits (emitter, receiver, or both) and the odors categorized accordingly (allomones, kairomones, and synomones, respectively), which has its origin in the definition of pheromones, i.e., intraspecific communication via volatile compounds. When considering vertebrates, however, interspecific odor-based effects exist which do not fit well in this paradigm. Three aspects in particular do not encompass all interspecific semiochemical effects: one relates to the innateness of the behavioral response, another to the origin of the odor, and the third to the intent of the message. In this review we focus on vertebrates, and present examples of behavioral responses of animals to odors from other species with specific reference to these three aspects. Searching for a more useful classification of allelochemical effects we examine the relationship between the valence of odors (attractive through to aversive), and the relative contributions of learned and unconditioned (innate) behavioral responses to odors from other species. We propose that these two factors (odor valence and learning) may offer an alternative way to describe the nature of interspecific olfactory effects involving vertebrates compared to the current focus on who benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA