Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Cell Proteomics ; 23(1): 100690, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065436

RESUMO

Serum proteomics has matured and is now able to monitor hundreds of proteins quantitatively in large cohorts of patients. However, the fine characteristics of some of the most dominant proteins in serum, the immunoglobulins, are in these studies often ignored, due to their vast, and highly personalized, diversity in sequences. Here, we focus exclusively on these personalized features in the serum proteome and distinctively chose to study individual samples from a low diversity population: elderly donors infected by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). By using mass spectrometry-based methods, immunoglobulin IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 Corona virus disease 2019 patients admitted to intensive care units. These clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and substantial changes over time, with several new clones appearing following the infection, in a few cases leading to a few, very high, abundant clones dominating their repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down, and bottom-up proteomics approaches. This revealed sequence features in line with sequences deposited in the SARS-CoV-specific antibody database. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, that subsequently dominated their serological IgG1 repertoire. Tocilizumab clearance could be monitored, and a half-life of approximately 6 days was established. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients' diagnostics, both in serum proteomics as well as in monitoring immune responses.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , Proteoma , Imunoglobulina G , Imunoglobulina A , Anticorpos Antivirais
2.
Proc Natl Acad Sci U S A ; 120(50): e2311265120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055740

RESUMO

Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L.


Assuntos
Linfócitos B , Cadeias J de Imunoglobulina , Imunoglobulina M/metabolismo , Cadeias J de Imunoglobulina/metabolismo , Linfócitos B/metabolismo , Antígenos , Macrófagos/metabolismo
3.
J Immunol ; 210(2): 158-167, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36480251

RESUMO

Abs can be glycosylated in both their Fc and Fab regions with marked effects on Ab function and binding. High levels of IgG Fab glycosylation are associated with malignant and autoimmune conditions, exemplified by rheumatoid arthritis and highly Fab-glycosylated (∼90%) anti-citrullinated protein Abs (ACPAs). Important properties of IgG, such as long half-life and placental transport, are facilitated by the human neonatal Fc receptor (hFcRn). Although it is known that glycosylation of Abs can affect binding to Fc receptors, little is known on the impact of IgG Fab glycosylation on hFcRn binding and transplacental transport. Therefore, we analyzed the interaction between hFcRn and IgG with and without Fab glycans in vitro with various methods as well as in vivo by studying placental transfer of Fab-glycosylated Abs from mothers to newborns. No effect of Fab glycosylation on IgG binding to hFcRn was found by surface plasmon resonance and hFcRn affinity chromatography. In contrast, studies in a cell membrane context revealed that Fab glycans negatively impacted IgG-hFcRn interaction. In line with this, we found that Fab-glycosylated IgGs were transported ∼20% less efficiently across the placenta. This appeared to be a general phenomenon, observed for ACPAs, non-ACPAs, as well as total IgG in rheumatoid arthritis patients and healthy controls. Our results suggest that, in a cellular context, Fab glycans inhibit IgG-hFcRn interaction and thus negatively affect the transplacental transfer of IgG. As Fab-glycosylated Abs are frequently associated with autoimmune and malignant disorders and may be potentially harmful, this might encompass a regulatory mechanism, limiting the half-life and transport of such Abs.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Gravidez , Humanos , Feminino , Recém-Nascido , Placenta , Receptores Fc/metabolismo , Imunoglobulina G , Antígenos de Histocompatibilidade Classe I , Polissacarídeos
4.
J Proteome Res ; 23(6): 2124-2136, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701233

RESUMO

Using proteomics and complexome profiling, we evaluated in a year-long study longitudinal variations in the plasma proteome of kidney failure patients, prior to and after a kidney transplantation. The post-transplant period was complicated by bacterial infections, resulting in dramatic changes in the proteome, attributed to an acute phase response (APR). As positive acute phase proteins (APPs), being elevated upon inflammation, we observed the well-described C-reactive protein and Serum Amyloid A (SAA), but also Fibrinogen, Haptoglobin, Leucine-rich alpha-2-glycoprotein, Lipopolysaccharide-binding protein, Alpha-1-antitrypsin, Alpha-1-antichymotrypsin, S100, and CD14. As negative APPs, being downregulated upon inflammation, we identified the well-documented Serotransferrin and Transthyretin, but added Kallistatin, Heparin cofactor 2, and interalpha-trypsin inhibitor heavy chain H1 and H2 (ITIH1, ITIH2). For the patient with the most severe APR, we performed plasma complexome profiling by SEC-LC-MS on all longitudinal samples. We observed that several plasma proteins displaying alike concentration patterns coelute and form macromolecular complexes. By complexome profiling, we expose how SAA1 and SAA2 become incorporated into high-density lipid particles, replacing largely Apolipoprotein (APO)A1 and APOA4. Overall, our data highlight that the combination of in-depth longitudinal plasma proteome and complexome profiling can shed further light on correlated variations in the abundance of several plasma proteins upon inflammatory events.


Assuntos
Proteínas Sanguíneas , Transplante de Rim , Proteoma , Humanos , Transplante de Rim/efeitos adversos , Proteoma/análise , Proteoma/metabolismo , Estudos Longitudinais , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Proteínas de Fase Aguda/metabolismo , Pessoa de Meia-Idade , Masculino , Proteômica/métodos , Feminino , Insuficiência Renal/sangue , Reação de Fase Aguda/sangue , Adulto
5.
Anal Chem ; 96(1): 23-27, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38105593

RESUMO

Human antibodies are heterogeneous molecules primarily due to clonal sequence variations. Analytical techniques to assess antibody levels quantitatively, such as ELISA, lack the power to resolve abundances at the clonal level. Recently, we introduced an LC-MS-based approach that can distinguish and quantify antibody clones using the mass and retention time of their corresponding Fab-fragments. We used specific hinge-cleaving protease IgdE (FabALACTICA) to release the Fab-fragments from the constant Fc region of the antibody. Here, we explore an alternative IgG1 hinge-cleaving protease, BdpK (FabDELLO), and compare it directly to IgdE for use in IgG1 repertoire profiling. We used IgdE and BdpK in parallel to digest all IgG1s from the same set of plasma samples. Both proteases cleave IgG1 specifically in the hinge, albeit via different mechanisms and at two distinct cleavage sites. Notwithstanding these differences, the Fab fragments generated by IgdE or BdpK produced highly similar clonal repertoires. However, IgdE required ∼16 h of incubation to digest plasma IgG1s, while BdpK required ∼2 h. We authenticated the similarity of the clones by top-down proteomics using electron transfer dissociation. We conclude that BdpK performs very well in digesting polyclonal plasma IgG1s and that neither BdpK nor IgdE displays detectable biases in cleaving IgG1s. We anticipate that BdpK may emerge as the preferred protease for IgG1 hinge-digestion because it offers a shorter digestion time compared to IgdE, an equally specific digestion site, and no bias against any IgG1 present in plasma.


Assuntos
Imunoglobulina G , Peptídeo Hidrolases , Humanos , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Espectrometria de Massas em Tandem , Endopeptidases , Fragmentos Fab das Imunoglobulinas , Células Clonais
6.
J Proteome Res ; 22(9): 3022-3028, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499263

RESUMO

Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Paraproteinemias , Humanos , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Paraproteinemias/diagnóstico , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Espectrometria de Massas , Imunoglobulina G
7.
Blood ; 136(23): 2656-2666, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32575115

RESUMO

Most patients with multiple myeloma develop a severe osteolytic bone disease. The myeloma cells secrete immunoglobulins, and the presence of monoclonal immunoglobulins in the patient's sera is an important diagnostic criterion. Here, we show that immunoglobulins isolated from myeloma patients with bone disease promote osteoclast differentiation when added to human preosteoclasts in vitro, whereas immunoglobulins from patients without bone disease do not. This effect was primarily mediated by immune complexes or aggregates. The function and aggregation behavior of immunoglobulins are partly determined by differential glycosylation of the immunoglobulin-Fc part. Glycosylation analyses revealed that patients with bone disease had significantly less galactose on immunoglobulin G (IgG) compared with patients without bone disease and also less sialic acid on IgG compared with healthy persons. Importantly, we also observed a significant reduction of IgG sialylation in serum of patients upon onset of bone disease. In the 5TGM1 mouse myeloma model, we found decreased numbers of lesions and decreased CTX-1 levels, a marker for osteoclast activity, in mice treated with a sialic acid precursor, N-acetylmannosamine (ManNAc). ManNAc treatment increased IgG-Fc sialylation in the mice. Our data support that deglycosylated immunoglobulins promote bone loss in multiple myeloma and that altering IgG glycosylation may be a therapeutic strategy to reduce bone loss.


Assuntos
Anticorpos Monoclonais/imunologia , Reabsorção Óssea/imunologia , Imunoglobulina G/imunologia , Mieloma Múltiplo/imunologia , Proteínas de Neoplasias/imunologia , Idoso , Animais , Reabsorção Óssea/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia
8.
Anal Chem ; 93(48): 16068-16075, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813704

RESUMO

Native top-down mass spectrometry (MS) is gaining traction for the analysis and sequencing of intact proteins and protein assemblies, giving access to their mass and composition, as well as sequence information useful for identification. Herein, we extend and apply native top-down MS, using electron capture dissociation, to two submillion Da IgM- and IgG-based oligomeric immunoglobulins. Despite structural similarities, these two systems are quite different. The ∼895 kDa noncovalent IgG hexamer consists of six IgG subunits hexamerizing in solution due to three specifically engineered mutations in the Fc region, whereas the ∼935 kDa IgM oligomer results from the covalent assembly of one joining (J) chain and 5 IgM subunits into an asymmetric "pentamer" stabilized by interchain disulfide bridges. Notwithstanding their size, structural differences, and complexity, we observe that their top-down electron capture dissociation spectra are quite similar and straightforward to interpret, specifically providing informative sequence tags covering the highly variable CDR3s and FR4s of the Ig subunits they contain. Moreover, we show that the electron capture dissociation fragmentation spectra of immunoglobulin oligomers are essentially identical to those obtained for their respective monomers. Demonstrated for recombinantly produced systems, the approach described here opens up new prospects for the characterization and identification of IgMs circulating in plasma, which is important since IgMs play a critical role in the early immune response to pathogens such as viruses and bacteria.


Assuntos
Regiões Determinantes de Complementaridade , Elétrons , Espectrometria de Massas , Proteínas
9.
Mol Cell Proteomics ; 18(1): 3-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242110

RESUMO

N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.


Assuntos
Artrite Reumatoide/metabolismo , Proteínas Sanguíneas/análise , Glicômica/métodos , Complicações na Gravidez/metabolismo , Adulto , Proteínas Sanguíneas/química , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Feminino , Glicosilação , Humanos , Gravidez , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Anal Chem ; 92(6): 4518-4526, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32091889

RESUMO

Immunoglobulin (Ig) glycosylation is recognized for its influence on Ig turnover and effector functions. However, the large-scale profiling of Ig glycosylation in a biomedical setting is challenged by the existence of different Ig isotypes and subclasses, their varying serum concentrations, and the presence of multiple glycosylation sites per Ig. Here, a high-throughput nanoliquid chromatography (LC)- mass spectrometry (MS)-based method for simultaneous analysis of IgG and IgA glycopeptides was developed and applied on a serum sample set from 185 healthy donors. Sample preparation from minute amounts of serum was performed in 96-well plate format. Prior to trypsin digestion, IgG and IgA were enriched simultaneously, followed by a one-step denaturation, reduction, and alkylation. The obtained nanoLC-MS data were subjected to semiautomated, targeted feature integration and quality control. The combined and simplified protocol displayed high overall method repeatability, as assessed using pooled plasma and serum standards. Taking all samples together, 143 individual N- and O-glycopeptides were reliably quantified. These glycopeptides were attributable to 11 different peptide backbones, derived from IgG1, IgG2/3, IgG4, IgA1, IgA2, and the joining chain from dimeric IgA. Using this method, novel associations were found between IgA N- and O-glycosylation and age. Furthermore, previously reported associations of IgG Fc glycosylation with age in healthy individuals were confirmed. In conclusion, the new method paves the way for high-throughput multiprotein plasma glycoproteomics.


Assuntos
Glicopeptídeos/sangue , Ensaios de Triagem em Larga Escala , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino
11.
Mol Cell Proteomics ; 16(2): 278-287, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956708

RESUMO

Recently, we showed the unexpectedly high abundance of N-linked glycans on the Fab-domain of Anti-Citrullinated Protein Antibodies (ACPA). As N-linked glycans can mediate a variety of biological functions, we now aimed at investigating the structural composition of the Fab-glycans of ACPA-IgG to better understand their mediated biological effects. ACPA-IgG and noncitrulline specific (control) IgG from plasma and/or synovial fluid of nine ACPA positive rheumatoid arthritis patients were affinity purified. The N-linked glycosylation of total, Fc and F(ab')2 fragments, as well as heavy and light chains of ACPA-IgG and control IgG were analyzed by UHPLC and MALDI-TOF mass spectrometry. The Fc-glycosylation of ACPA-IgG and IgG was analyzed at the glycopeptide level using LC-MS. The structural analyses revealed that ACPA-IgG molecules contain highly sialylated glycans in their Fab-domain. Importantly, Fab-glycans were estimated to be present on over 90% of ACPA-IgG, which is five times higher than in control IgG isolated from the same patients. This feature was more prominent on ACPA isolated from synovial fluid compared with peripheral blood. These observations provide the first evidence pointing to the ability of ACPA-IgG to mediate novel immunological activities, for example through binding specific lectins via hyper-sialylated Fab-glycans.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/química , Fragmentos Fc das Imunoglobulinas/química , Polissacarídeos/química , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Imunoglobulina G/análise , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Líquido Sinovial/química , Líquido Sinovial/imunologia
12.
Ann Rheum Dis ; 77(8): 1130-1136, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29615411

RESUMO

OBJECTIVES: Patients with autoantibody-positive rheumatoid arthritis (RA) are less likely to experience pregnancy-induced improvement of RA disease activity (DAS28-C reactive protein (CRP)) compared with patients with autoantibody-negative RA. Anti-citrullinated protein antibodies (ACPAs) are the most specific autoantibodies for RA. We previously demonstrated that disease improvement is associated with changes in total IgG glycosylation, which regulate antibody effector function. Therefore, we sought to analyse the ACPA-IgG glycosylation profile during pregnancy with the aim to understand the lower change of pregnancy-induced improvement of the disease in patients with autoantibody-positive RA. METHODS: ACPA-IgGs were purified from ACPA-positive patient sera (n=112) of the Pregnancy-induced Amelioration of Rheumatoid Arthritis cohort, a prospective study designed to investigate pregnancy-associated improvement of RA. The fragment crystallisable (Fc)glycosylation profile of ACPA-IgGs was characterised by mass spectrometry and compared with that of total IgG derived from the same patients or from ACPA-negative patients. RESULTS: All ACPA-IgG subclasses display significant changes in the level of galactosylation and sialylation during pregnancy, although less pronounced than in total IgG. The pregnancy-induced increase in ACPA-IgG galactosylation, but not sialylation, associates with lower DAS28-CRP. In ACPA-positive patients, no such association was found with changes in the galactosylation of total IgG, whereas in ACPA-negative patients changes in disease activity correlated well with changes in the galactosylation of total IgG. CONCLUSIONS: In ACPA-positive RA, the pregnancy-induced change in galactosylation of ACPA-IgG, and not that of total IgG, associates with changes in disease activity. These data may indicate that in ACPA-positive patients the galactosylation of ACPA-IgG is of more pathogenic relevance than that of total IgG.


Assuntos
Anticorpos Antiproteína Citrulinada/sangue , Artrite Reumatoide/imunologia , Imunoglobulina G/sangue , Complicações na Gravidez/imunologia , Adulto , Biomarcadores/sangue , Feminino , Glicosilação , Humanos , Gravidez , Estudos Prospectivos , Índice de Gravidade de Doença , Adulto Jovem
13.
Mol Cell Proteomics ; 15(7): 2217-28, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27009965

RESUMO

Antibody glycosylation analysis has seen methodological progress resulting in new findings with regard to antibody glycan structure and function in recent years. For example, antigen-specific IgG glycosylation analysis is now applicable for clinical samples because of the increased sensitivity of measurements, and this has led to new insights in the relationship between IgG glycosylation and various diseases. Furthermore, many new methods have been developed for the purification and analysis of IgG Fc glycopeptides, notably multiple reaction monitoring for high-throughput quantitative glycosylation analysis. In addition, new protocols for IgG Fab glycosylation analysis were established revealing autoimmune disease-associated changes. Functional analysis has shown that glycosylation of IgA and IgE is involved in transport across the intestinal epithelium and receptor binding, respectively.


Assuntos
Doenças Autoimunes/metabolismo , Fragmentos Fc das Imunoglobulinas/química , Proteômica/métodos , Antígenos/metabolismo , Transporte Biológico , Glicosilação , Humanos , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo
14.
Glycoconj J ; 33(3): 309-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26555091

RESUMO

Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level.


Assuntos
Proteínas Sanguíneas/metabolismo , Glicoproteínas/sangue , Processamento de Proteína Pós-Traducional , Proteínas Sanguíneas/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos
15.
Mol Cell Proteomics ; 13(11): 3029-39, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25004930

RESUMO

The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼ 20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 µl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding.


Assuntos
Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/sangue , Polissacarídeos/análise , Feminino , Glicosilação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ácido N-Acetilneuramínico/química , Polissacarídeos/isolamento & purificação , Período Pós-Parto , Gravidez , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
J Proteome Res ; 14(12): 5088-98, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26565759

RESUMO

The study of N-linked glycosylation has long been complicated by a lack of bioinformatics tools. In particular, there is still a lack of fast and robust data processing tools for targeted (relative) quantitation. We have developed modular, high-throughput data processing software, MassyTools, that is capable of calibrating spectra, extracting data, and performing quality control calculations based on a user-defined list of glycan or glycopeptide compositions. Typical examples of output include relative areas after background subtraction, isotopic pattern-based quality scores, spectral quality scores, and signal-to-noise ratios. We demonstrated MassyTools' performance on MALDI-TOF-MS glycan and glycopeptide data from different samples. MassyTools yielded better calibration than the commercial software flexAnalysis, generally showing 2-fold better ppm errors after internal calibration. Relative quantitation using MassyTools and flexAnalysis gave similar results, yielding a relative standard deviation (RSD) of the main glycan of ~6%. However, MassyTools yielded 2- to 5-fold lower RSD values for low-abundant analytes than flexAnalysis. Additionally, feature curation based on the computed quality criteria improved the data quality. In conclusion, we show that MassyTools is a robust automated data processing tool for high-throughput, high-performance glycosylation analysis. The package is released under the Apache 2.0 license and is freely available on GitHub ( https://github.com/Tarskin/MassyTools ).


Assuntos
Glicômica/métodos , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Anticorpos Monoclonais/análise , Calibragem , Processamento Eletrônico de Dados/métodos , Glicopeptídeos/análise , Glicosilação , Humanos , Polissacarídeos/análise , Controle de Qualidade , Razão Sinal-Ruído
17.
J Proteome Res ; 14(9): 4080-6, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26179816

RESUMO

Glycosylation is a post-translational modification of key importance with heterogeneous structural characteristics. Previously, we have developed a robust, high-throughput MALDI-TOF-MS method for the comprehensive profiling of human plasma N-glycans. In this approach, sialic acid residues are derivatized with linkage-specificity, namely the ethylation of α2,6-linked sialic acid residues with parallel lactone formation of α2,3-linked sialic acids. In the current study, this procedure was used as a starting point for the automation of all steps on a liquid-handling robot system. This resulted in a time-efficient and fully standardized procedure with throughput times of 2.5 h for a first set of 96 samples and approximately 1 h extra for each additional sample plate. The mass analysis of the thus-obtained glycans was highly reproducible in terms of relative quantification, with improved interday repeatability as compared to that of manual processing.


Assuntos
Automação/métodos , Glicoproteínas/sangue , Glicoproteínas/química , Ensaios de Triagem em Larga Escala/métodos , Ácido N-Acetilneuramínico/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esterificação , Glicoproteínas/metabolismo , Glicosilação , Ácido N-Acetilneuramínico/química , Reprodutibilidade dos Testes
18.
Mol Cell Proteomics ; 12(4): 856-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23325769

RESUMO

Antibody glycosylation has been shown to change with various processes. This review presents mass spectrometric approaches for antibody glycosylation analysis at the level of released glycans, glycopeptides, and intact protein. With regard to IgG fragment crystallizable glycosylation, mass spectrometry has shown its potential for subclass-specific, high-throughput analysis. In contrast, because of the vast heterogeneity of peptide moieties, fragment antigen binding glycosylation analysis of polyclonal IgG relies entirely on glycan release. Next to IgG, IgA has gained some attention, and studies of its O- and N-glycosylation have revealed disease-associated glycosylation changes. Glycoproteomic analyses of IgM and IgE are lagging behind but should complete our picture of glycosylation's influence on antibody function.


Assuntos
Anticorpos/metabolismo , Glicoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/química , Configuração de Carboidratos , Sequência de Carboidratos , Glicoproteínas/química , Glicosilação , Humanos , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica
19.
Anal Biochem ; 453: 29-37, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24613257

RESUMO

The study of protein O-glycosylation is receiving increasing attention in biological, medical, and biopharmaceutical research. Improved techniques are required to allow reproducible and quantitative analysis of O-glycans. An established approach for O-glycan analysis relies on their chemical release in high yield by hydrazinolysis, followed by fluorescent labeling at the reducing terminus and high-performance liquid chromatography (HPLC) profiling. However, an unwanted degradation known as "peeling" often compromises hydrazinolysis for O-glycan analysis. Here we addressed this problem using low-molarity solutions of ethylenediaminetetraacetic acid (EDTA) in hydrazine for O-glycan release. O-linked glycans from a range of different glycoproteins were analyzed, including bovine fetuin, bovine submaxillary gland mucin, and serum immunoglobulin A (IgA). The data for the O-glycans released by hydrazine with anhydrous EDTA or disodium salt dihydrate EDTA show high yields of the native O-glycans compared with the peeled product, resulting in a markedly increased robustness of the O-glycan profiling method. The presented method for O-glycan release demonstrates significant reduction in peeling and reduces the number of sample handling steps prior to release.


Assuntos
Ácido Edético/química , Hidrazinas/química , Polissacarídeos/química , Cromatografia Líquida de Alta Pressão
20.
Nat Commun ; 15(1): 3114, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600082

RESUMO

The presence of autoantibodies is a defining feature of many autoimmune diseases. The number of unique autoantibody clones is conceivably limited by immune tolerance mechanisms, but unknown due to limitations of the currently applied technologies. Here, we introduce an autoantigen-specific liquid chromatography-mass spectrometry-based IgG1 Fab profiling approach using the anti-citrullinated protein antibody (ACPA) repertoire in rheumatoid arthritis (RA) as an example. We show that each patient harbors a unique and diverse ACPA IgG1 repertoire dominated by only a few antibody clones. In contrast to the total plasma IgG1 antibody repertoire, the ACPA IgG1 sub-repertoire is characterised by an expansion of antibodies that harbor one, two or even more Fab glycans, and different glycovariants of the same clone can be detected. Together, our data indicate that the autoantibody response in a prominent human autoimmune disease is complex, unique to each patient and dominated by a relatively low number of clones.


Assuntos
Artrite Reumatoide , Autoanticorpos , Humanos , Anticorpos Antiproteína Citrulinada , Imunoglobulina G , Autoantígenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA