Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 15(14): 2913-6, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25111007

RESUMO

The crystallinity of an organic semiconductor film determines the efficiency of charge transport in electronic devices. This report presents a micro-to-nanoscale investigation on the crystal growth of fluorinated 5,11-bis(triethylgermylethynyl)anthradithiophene (diF-TEG-ADT) and its implication for the electrical behavior of organic field-effect transistors (OFETs). diF-TEG-ADT exhibits remarkable self-assembly through spin-cast preparation, with highly aligned edge-on stacking creating a fast hole-conducting channel for OFETs.

2.
Sci Rep ; 12(1): 4520, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296696

RESUMO

Organic-inorganic metal halide perovskites (MHPs) have recently been receiving a lot of attention due to their newfound application in optoelectronic devices, including perovskite solar cells (PSCs) which have reached power conversion efficiencies as high as 25.5%. However, the fundamental mechanisms in PSCs, including the correlation of degradation with the excellent optoelectrical properties of the perovskite absorbers, are poorly understood. In this paper, we have explored synchrotron-based soft X-ray characterization as an effective technique for the compositional analysis of MHP thin films. Most synchrotron-based studies used for investigating MHPs so far are based on hard X-rays (5-10 keV) which include various absorption edges (Pb L-edge, I L-edge, Br K-edge, etc.) but are not suited for the analysis of the organic component in these materials. In order to be sensitive to a maximum number of elements, we have employed soft X-ray-based scanning transmission X-ray microscopy (STXM) as a spectro-microscopy technique for the characterization of MHPs. We examined its sensitivity to iodine and organic components, aging, or oxidation by-products in MHPs to make sure that our suggested method is suitable for studying MHPs. Furthermore, methylammonium triiodide with different deposition ratios of PbI2 and CH3NH3I (MAI), and different thicknesses, were characterized for chemical inhomogeneity at the nanoscale by STXM. Through these measurements, we demonstrate that STXM is very sensitive to chemical composition and homogeneity in MHPs. Thus, we highlight the utility of STXM for an in-depth analysis of physical and chemical phenomena in PSCs.

3.
RSC Adv ; 12(39): 25570-25577, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199324

RESUMO

We describe the investigation of metal halide perovskite layers, particularly CH3NH3PbI3 used in photovoltaic applications, by soft X-ray scanning transmission X-ray microscopy (STXM). Relevant reference spectra were used to fit the experimental data using singular value decomposition. The distribution of key elements Pb, I, and O was determined throughout the layer stack of two samples prepared by wet process. One sample was chosen to undergo electrical biasing. Spectral data shows the ability of STXM to provide relevant chemical information for these samples. We found the results to be in good agreement with the sample history, both regarding the deposition sequence and the degradation of the perovskite material.

4.
Adv Colloid Interface Sci ; 275: 102080, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31809990

RESUMO

Printed organic electronics has attracted considerable interest in recent years as it enables the fabrication of large-scale, low-cost electronic devices, and thus offers significant possibilities in terms of developing new applications in various fields. Easy processing is a prerequisite for the development of low-cost, flexible and printed plastics electronics. Among processing techniques, meniscus guided coating methods are considered simple, efficient, and low-cost methods to fabricate electronic devices in industry. One of the major challenges is the control of thin film morphology, molecular orientations and directional alignment of polymer films during coating processes. Herein, the recent progress of emerging field of meniscus guided printing organic semiconductor materials is discussed. The first part of this report briefly summarizes recent advances in meniscus guided coating techniques. The second part discusses periodic deposits and patterned deposition at moving contact lines, where the mass-transport influences film morphology due to convection at the triple contact line. The last section summarizes our strategy to fabricate large-scale patterning of π-conjugated polymers using meniscus guided method.

5.
Materials (Basel) ; 12(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621007

RESUMO

We propose a novel method to pattern the charge recombination layer (CRL) with a low-temperature solution-processable ZnO layer (under 150 °C) for organic solar cell applications. Due to the optimal drying process and thermal annealing condition, ZnO sol-gel particles formed a three-Dimensional (3D) structure without using a high temperature or ramping method. The generated 3D nano-ripple pattern showed a height of around 120 nm, and a valley-to-valley distance of about 500 nm. Based on this newly developed ZnO nano-ripple patterning technique, it was possible to pattern the CRL without damaging the underneath layers in tandem structure. The use of nano-ripple patterned ZnO as the part of CRL, led to the concomitant improvement of the power conversion efficiency (PCE) of about 30%, compared with non-patterned CRL device.

6.
Biosensors (Basel) ; 8(4)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384434

RESUMO

We develop a numerical model for the current-voltage characteristics of organic electrochemical transistors (OECTs) based on steady-state Poisson's, Nernst's and Nernst⁻Planck's equations. The model starts with the doping⁻dedoping process depicted as a moving front, when the process at the electrolyte⁻polymer interface and gradually moves across the film. When the polymer reaches its final state, the electrical potential and charge density profiles largely depend on the way the cations behave during the process. One case is when cations are trapped at the polymer site where dedoping occurs. In this case, the moving front stops at a point that depends on the applied voltage; the higher the voltage, the closer the stopping point to the source electrode. Alternatively, when the cations are assumed to move freely in the polymer, the moving front eventually reaches the source electrode in all cases. In this second case, cations tend to accumulate near the source electrode, and most of the polymer is uniformly doped. The variation of the conductivity of the polymer film is then calculated by integrating the density of holes all over the film. Output and transfer curves of the OECT are obtained by integrating the gate voltage-dependent conductivity from source to drain.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Polímeros/química , Eletrodos
7.
ACS Nano ; 12(4): 3477-3486, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29565559

RESUMO

Hybrid organic-inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI3, whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI3 (γ, δ, ß) and show that avoiding the order-disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.

8.
J Phys Chem Lett ; 8(12): 2659-2665, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28553717

RESUMO

Hybrid perovskites have emerged over the past five years as absorber layers for novel high-efficiency low-cost solar cells combining the advantages of organic and inorganic semiconductors. Unfortunately, electrical transport in these materials is still poorly understood. Employing the linear response approach of density functional theory, we reveal strong anharmonic effects and a double-well phonon instability at the center of the Brillouin zone for both cubic and orthorhombic phases of inorganic CsPbI3. Previously reported soft phonon modes are stabilized at the actual lower-symmetry equilibrium structure, which occurs in a very flat energy landscape, highlighting the strong competition between the different phases of CsPbI3. Factoring these low-energy phonons into electron-phonon interactions and band gap calculations could help better understand the electrical transport properties in these materials. Furthermore, the perovskite oscillations through the corresponding energy barrier could explain the underlying ferroelectricity and the dynamical Rashba effect predicted in halide perovskites for photovoltaics.

9.
ACS Appl Mater Interfaces ; 8(23): 14701-8, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27188403

RESUMO

Recent improvement in the performance of the n-type organic semiconductors as well as thin gate dielectrics based on cross-linked polymers offers new opportunities to develop high-performance low-voltage n-type OFETs suitable for organic complementary circuits. Using TIPS-tetracyanotriphenodioxazine (TIPS-TPDO-tetraCN) and cross-linked poly(methyl methacrylate) (c-PMMA), respectively as n-type organic semiconductor and gate dielectric, linear regime field-effect mobility (1.8 ± 0.2) × 10(-2) cm(2) V(-1)s(-1), small spatial standard deviation of threshold voltage (∼0.1 V), and operating voltage less than 3 V are attainable with the same device structure and contact materials used commonly for p-type OFETs. Through comparative static and dynamic characterizations of c-PMMA and PMMA gate dielectrics, it is shown that both smaller thickness and larger relative permittivity of c-PMMA contributes to reduced operating voltage. Furthermore, negligible hysteresis brings evidence to small trap states in the semiconductor near gate dielectric of the n-type OFETs with c-PMMA. The use of TIPS-TPDO-tetraCN and c-PMMA is fully compatible with polyethylene terephthalate substrate, giving promise to various flexible applications.

10.
ACS Appl Mater Interfaces ; 5(9): 3716-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23611406

RESUMO

Solution-processed organic field-effect transistors (OFETs) using chemically modified copper electrodes are reported. The purpose of this study is to shed light on the use of inexpensive copper electrodes in bottom-contact OFETs, which is consistent with the major goal of organic electronics: the realization of low-cost electronics. 6,13-Bis(triisopropylsilylethynyl)pentacene was used for solution-processed hole-transporting molecular films and pentafluorobenzenethiol was used to form self-assembled monolayers (SAMs) on the contact metals. We conducted a comparative study on copper and gold contacts and realized that, under the same performance improvement schemes, via SAM treatment and controlled crystal growth, the copper electrode device experienced a more significant enhancement than the gold electrode device. We attribute the beneficial effects of SAMs to the improved charge injection and transport properties, which are critical double effects from the fluorinated aromatic SAM structure. Grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements showed that templating property of SAMs promotes the crystallization of TIPS-pentacene films at the metal/organic interface. The presented result indicates that copper can be regarded as a promising candidate for reducing the use of gold in organic-based circuits and systems, where the cost-effective production is an important issue.

11.
ACS Appl Mater Interfaces ; 3(3): 740-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21370816

RESUMO

Ethanol-mediated metal transfer printing (mTP) is a soft method, which allows to efficiently deposit metals onto various organic surfaces for applications in organic electronics. This simple approach in based on the stronger adhesion of the metals to the organic materials in the presence of thin ethanol layer between the metallized PDMS and the substrate due to the capillary action. Patterns with a resolution of at least 20 µm have been obtained on organic polymeric materials and photoresists without heating or applied pressure. Compared to other methods ethanol mediated mTP is considerably faster and has smaller limitations on the stamp depth. Residual silicone layer detected on the metal surface after the transfer by XPS studies has been mostly removed by UV/ozone treatment. Organic field-effect transistors (OTFTs) based on the metal electrodes deposited by mTP have been successfully fabricated and tested.


Assuntos
Eletrodos , Etanol/química , Ouro/química , Membranas Artificiais , Compostos Orgânicos/química , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Propriedades de Superfície
12.
ACS Appl Mater Interfaces ; 1(3): 584-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20355979

RESUMO

The paper reports the use of self-assembled monolayers (SAMs) of dithiols to induce electroless copper deposition on a gold substrate. The metallization catalyst, palladium nanoparticles, is bound on the dithiol SAM. The assembly process is followed by IR and X-ray photoelectron spectroscopies to confirm the formation of a monolayer with bound catalyst. Electroless metallization is then carried out with a steady deposition rate of 130 nm/min. Additionally, microcontact printing of the catalyst on the SAM by poly(dimethylsiloxane) stamps is used to localize copper deposits. Resulting metallization is selective and allows for a high resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA