Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Antimicrob Agents Chemother ; 58(6): 3233-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24663024

RESUMO

BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 µM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Assuntos
Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Animais , Fármacos Anti-HIV/farmacologia , Células CACO-2 , Clonagem Molecular , Inibidores das Enzimas do Citocromo P-450/farmacologia , DNA Viral/efeitos dos fármacos , Farmacorresistência Viral , Integrase de HIV/biossíntese , Integrase de HIV/genética , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacocinética , Hepatócitos/metabolismo , Humanos , Camundongos , Ratos , Soro/virologia , Replicação Viral/efeitos dos fármacos
2.
Sensors (Basel) ; 14(6): 11260-76, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24961217

RESUMO

We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10(-5) is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions.


Assuntos
Técnicas de Química Analítica/instrumentação , Misturas Complexas/análise , Gases/análise , Microquímica/instrumentação , Ultrassonografia/instrumentação , Técnicas de Química Analítica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Microquímica/métodos , Ultrassonografia/métodos
3.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1115-23, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695256

RESUMO

Despite truly impressive achievements in the global battle against HIV there remains a need for new drugs directed against novel targets, and the viral capsid protein (CA) may represent one such target. Intense structural characterization of CA over the last two decades has provided unprecedented insight into the structure and assembly of this key viral protein. Furthermore, several inhibitor-binding sites that elicit antiviral activity have been reported on CA, two of which are located on its N-terminal domain (CANTD). In this work, the binding of a novel capsid-assembly inhibitor that targets a unique inhibitory site on CANTD is reported. Moreover, whereas cocrystallization of CANTD in complex with ligands has proven to be challenging in the past, the use of this inhibitor as a tool compound is shown to vastly facilitate ternary cocrystallizations with CANTD. This improvement in crystallization is likely to be achieved through the formation of a compound-mediated homodimer, the intrinsic symmetry of which greatly increases the prospect of generating a crystal lattice. While protein engineering has been used in the literature to support a link between the inherent symmetry of a macromolecule and its propensity to crystallize, to our knowledge this work represents the first use of a synthetic ligand for this purpose.


Assuntos
Antivirais/química , Proteínas do Capsídeo/química , Capsídeo/química , HIV-1/química , Antivirais/metabolismo , Sítios de Ligação , Capsídeo/metabolismo , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/metabolismo , Cristalização , HIV-1/metabolismo , Modelos Moleculares , Difração de Raios X
4.
Pharm Res ; 30(4): 996-1007, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23269503

RESUMO

PURPOSE: Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. METHODS: Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. RESULTS: QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71-100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. CONCLUSIONS: The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles.


Assuntos
Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Inteligência Artificial , Transporte Biológico Ativo , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Bases de Dados de Proteínas , Humanos , Proteínas de Membrana Transportadoras/química , Modelos Biológicos , Preparações Farmacêuticas/química , Farmacocinética , Relação Quantitativa Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 23(11): 3396-400, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23583513

RESUMO

The optimization of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly that possess a labile stereocenter at C3 is described. Quaternization of the C3 position of compound 1 in order to prevent racemization gave compound 2, which was inactive in our capsid disassembly assay. A likely explanation for this finding was revealed by in silico analysis predicting a dramatic increase in energy of the bioactive conformation upon quaternization of the C3 position. Replacement of the C3 of the diazepine ring with a nitrogen atom to give the 1,5-dihydro-benzo[f][1,3,5]triazepine-2,4-dione analog 4 was well tolerated. Introduction of a rigid spirocyclic system at the C3 position gave configurationally stable 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione analog 5, which was able to access the bioactive conformation without a severe energetic penalty and inhibit capsid assembly. Preliminary structure-activity relationships (SAR) and X-ray crystallographic data show that knowledge from the 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly can be transferred to these new scaffolds.


Assuntos
Fármacos Anti-HIV/química , Benzodiazepinas/química , Proteínas do Capsídeo/antagonistas & inibidores , HIV-1/metabolismo , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Benzodiazepinas/síntese química , Benzodiazepinas/farmacologia , Sítios de Ligação , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Terciária de Proteína , Estereoisomerismo , Relação Estrutura-Atividade , Montagem de Vírus/efeitos dos fármacos
6.
Bioorg Med Chem Lett ; 23(11): 3401-5, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23601710

RESUMO

Detailed structure-activity relationships of the C3-phenyl moiety that allow for the optimization of antiviral potency of a series of 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione inhibitors of HIV capsid (CA) assembly are described. Combination of favorable substitutions gave additive SAR and allowed for the identification of the most potent compound in the series, analog 27. Productive SAR also transferred to the benzotriazepine and spirobenzodiazepine scaffolds, providing a solution to the labile stereocenter at the C3 position. The molecular basis of how compound 27 inhibits mature CA assembly is rationalized using high-resolution structural information. Our understanding of how compound 27 may inhibit immature Gag assembly is also discussed.


Assuntos
Fármacos Anti-HIV/química , Benzodiazepinas/química , Benzodiazepinonas/química , Proteínas do Capsídeo/antagonistas & inibidores , HIV-1/metabolismo , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Benzodiazepinas/síntese química , Benzodiazepinas/farmacologia , Benzodiazepinonas/síntese química , Benzodiazepinonas/farmacologia , Sítios de Ligação , Células CACO-2 , Proteínas do Capsídeo/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Estereoisomerismo , Relação Estrutura-Atividade , Montagem de Vírus/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 21(1): 398-404, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21087861

RESUMO

The discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly is described. Synthesis of analogs of the 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione hit established structure-activity relationships. Replacement of the enamine functionality of the hit series with either an imidazole or a pyrazole ring led to compounds that inhibited both capsid assembly and reverse transcriptase. Optimization of the bicyclic benzodiazepine scaffold to include a 3-phenyl substituent led to lead compound 48, a pure capsid assembly inhibitor with improved antiviral activity.


Assuntos
Fármacos Anti-HIV/química , Benzodiazepinonas/química , Proteínas do Capsídeo/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Benzodiazepinonas/síntese química , Benzodiazepinonas/farmacologia , Proteínas do Capsídeo/metabolismo , Avaliação Pré-Clínica de Medicamentos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , Humanos , Imidazóis/química , Pirazóis/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade
9.
Nature ; 426(6963): 186-9, 2003 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-14578911

RESUMO

Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.


Assuntos
Antivirais/uso terapêutico , Carbamatos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Compostos Macrocíclicos , Quinolinas , Inibidores de Serina Proteinase/uso terapêutico , Tiazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Antivirais/administração & dosagem , Antivirais/farmacocinética , Antivirais/farmacologia , Carbamatos/administração & dosagem , Carbamatos/química , Carbamatos/farmacocinética , Método Duplo-Cego , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Masculino , Poliproteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/farmacocinética , Inibidores de Serina Proteinase/farmacologia , Tiazóis/administração & dosagem , Tiazóis/química , Tiazóis/farmacocinética , Carga Viral , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo
10.
Bioorg Med Chem Lett ; 19(4): 1199-205, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19138518

RESUMO

The role of the tetrazole moiety in the binding of aryl thiotetrazolylacetanilides with HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases was explored. Different acyclic, cyclic and heterocyclic replacements were investigated in order to evaluate the conformational and electronic contribution of the tetrazole ring to the binding of the inhibitors in the NNRTI pocket. The replacement of the tetrazole by a pyrazolyl group led to reversal of selectivity, providing inhibitors with excellent potency against the double mutant reverse transcriptase.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/genética , Tetrazóis/síntese química , Tetrazóis/farmacologia , Fármacos Anti-HIV/química , Técnicas de Química Combinatória , Desenho de Fármacos , HIV-1/efeitos dos fármacos , HIV-1/genética , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tetrazóis/química
11.
Cell Rep ; 26(12): 3246-3256.e4, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893598

RESUMO

Tryptophan as the precursor of several active compounds, including kynurenine and serotonin, is critical for numerous important metabolic functions. Enhanced tryptophan metabolism toward the kynurenine pathway has been associated with myelodysplastic syndromes (MDSs), which are preleukemic clonal diseases characterized by dysplastic bone marrow and cytopenias. Here, we reveal a fundamental role for tryptophan metabolized along the serotonin pathway in normal erythropoiesis and in the physiopathology of MDS-related anemia. We identify, both in human and murine erythroid progenitors, a functional cell-autonomous serotonergic network with pro-survival and proliferative functions. In vivo studies demonstrate that pharmacological increase of serotonin levels using fluoxetine, a common antidepressant, has the potential to become an important therapeutic strategy in low-risk MDS anemia refractory to erythropoietin.


Assuntos
Anemia/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoese/efeitos dos fármacos , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Serotonina/farmacologia , Anemia/tratamento farmacológico , Anemia/patologia , Animais , Células Precursoras Eritroides/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/tratamento farmacológico
12.
ACS Med Chem Lett ; 7(8): 797-801, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27563405

RESUMO

Optimization of pyridine-based noncatalytic site integrase inhibitors (NCINIs) based on compound 2 has led to the discovery of molecules capable of inhibiting virus harboring N124 variants of HIV integrase (IN) while maintaining minimal contribution of enterohepatic recirculation to clearance in rat. Structure-activity relationships at the C6 position established chemical space where the extent of enterohepatic recirculation in the rat is minimized. Desymmetrization of the C4 substituent allowed for potency optimization against virus having the N124 variant of integrase. Combination of these lessons led to the discovery of compound 20, having balanced serum-shifted antiviral potency and minimized excretion in to the biliary tract in rat, potentially representing a clinically viable starting point for a new treatment option for individuals infected with HIV.

13.
J Med Chem ; 48(17): 5580-8, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16107158

RESUMO

A series of novel 8-substituted dipyridodiazepinone-based inhibitors were investigated for their antiviral activity against wild type human immunodeficiency virus (HIV-1) and the clinically prevalent K103N/Y181C mutant virus. Our efforts have resulted in a series of benzoic acid analogues that are potent inhibitors of HIV-1 replication against a panel of HIV-1 strains resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Furthermore, the combination of good antiviral potency, a broad spectrum of activity, and an excellent pharmacokinetic profile provides strong justification for the further development of compound (7) as a potential treatment for wild type and NNRTI-resistant HIV-1 infection.


Assuntos
Fármacos Anti-HIV/síntese química , Azepinas/síntese química , Farmacorresistência Viral , HIV-1/efeitos dos fármacos , Piridinas/síntese química , Inibidores da Transcriptase Reversa/farmacologia , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Azepinas/química , Azepinas/farmacologia , Células CACO-2 , Cães , HIV-1/genética , Humanos , Técnicas In Vitro , Macaca mulatta , Masculino , Microssomos Hepáticos/metabolismo , Mutação , Permeabilidade , Piridinas/química , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
14.
J Med Chem ; 47(1): 123-32, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14695826

RESUMO

A comparative NMR conformational analysis of three distinct tetrapeptide inhibitors of the Hepatitis C NS3 protease that differ at the 4-aryloxy-substituted P2 proline position was undertaken. Specifically, transferred nuclear Overhauser effect experiments in combination with restrained systematic conformational searches were used to characterize the orientation of the P2 aryl substituents of these inhibitors when bound to the NS3 protease. Differences between free and bound conformations were also investigated. Analysis of the results allowed the design of a new P2 aromatic substituent, which significantly increased the potency of our inhibitors. The bound conformation of a specific competitive inhibitor having this novel P2 substituent is also described, along with a model of this inhibitor bound to the NS3 protease. This NS3 protease/inhibitor complex model also supports a hypothetical stabilization role for the P2 residue of the substrates and/or inhibitors and further elucidates the subtle details of the binding of the P2 residue of substrate-based inhibitors.


Assuntos
Oligopeptídeos/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Desenho de Fármacos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oligopeptídeos/química , Prolina/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
15.
Angew Chem Int Ed Engl ; 37(19): 2729-2732, 1998 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29711617

RESUMO

A weak inhibitor means faster exchange! Since the methyl ketone MK2 is a weak noncovalent peptidyl inhibitor of the human cytomegalovirus protease, exchange between the free and enzyme-bound forms is rapid. This allows for the use of transferred NOE NMR methods and molecular modeling, which show that the bound conformation of MK2 is an extended peptide. This is confirmed by the results of an X-ray crystallographic analysis of a related enzyme-inhibitor complex.

16.
J Med Chem ; 57(5): 2074-90, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24467709

RESUMO

Future treatments for individuals infected by the hepatitis C virus (HCV) will likely involve combinations of compounds that inhibit multiple viral targets. The helicase of HCV is an attractive target with no known drug candidates in clinical trials. Herein we describe an integrated strategy for identifying fragment inhibitors using structural and biophysical techniques. Based on an X-ray structure of apo HCV helicase and in silico and bioinformatic analyses of HCV variants, we identified that one site in particular (labeled 3 + 4) was the most conserved and attractive pocket to target for a drug discovery campaign. Compounds from multiple sources were screened to identify inhibitors or binders to this site, and enzymatic and biophysical assays (NMR and SPR) were used to triage the most promising ligands for 3D structure determination by X-ray crystallography. Medicinal chemistry and biophysical evaluations focused on exploring the most promising lead series. The strategies employed here can have general utility in drug discovery.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , RNA Helicases/antagonistas & inibidores , Serina Endopeptidases , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
17.
J Med Chem ; 57(5): 1932-43, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23773186

RESUMO

The design and preliminary SAR of a new series of 1H-quinazolin-4-one (QAZ) allosteric HCV NS5B thumb pocket 2 (TP-2) inhibitors was recently reported. To support optimization efforts, a molecular dynamics (MD) based modeling workflow was implemented, providing information on QAZ binding interactions with NS5B. This approach predicted a small but critical ligand-binding induced movement of a protein backbone region which increases the pocket size and improves access to the backbone carbonyl groups of Val 494 and Pro 495. This localized backbone shift was consistent with key SAR results and was subsequently confirmed by X-ray crystallography. The MD protocol guided the design of inhibitors, exploiting novel H-bond interactions with the two backbone carbonyl groups, leading to the first thumb pocket 2 NS5B inhibitor with picomolar antiviral potency in genotype (gt) 1a and 1b replicons (EC50 = 120 and 110 pM, respectively) and with EC50 ≤ 80 nM against gt 2-6.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Replicon/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica , Antivirais/química , Linhagem Celular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Hepacivirus/genética , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
18.
ACS Med Chem Lett ; 5(4): 422-7, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900852

RESUMO

An assay recapitulating the 3' processing activity of HIV-1 integrase (IN) was used to screen the Boehringer Ingelheim compound collection. Hit-to-lead and lead optimization beginning with compound 1 established the importance of the C3 and C4 substituent to antiviral potency against viruses with different aa124/aa125 variants of IN. The importance of the C7 position on the serum shifted potency was established. Introduction of a quinoline substituent at the C4 position provided a balance of potency and metabolic stability. Combination of these findings ultimately led to the discovery of compound 26 (BI 224436), the first NCINI to advance into a phase Ia clinical trial.

19.
J Mol Biol ; 425(11): 1982-1998, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23485336

RESUMO

The nucleocapsid (NC) protein is an essential factor with multiple functions within the human immunodeficiency virus type 1 (HIV-1) replication cycle. In this study, we describe the discovery of a novel series of inhibitors that targets HIV-1 NC protein by blocking its interaction with nucleic acids. This series was identified using a previously described capsid (CA) assembly assay, employing a recombinant HIV-1 CA-NC protein and immobilized TG-rich deoxyoligonucleotides. Using visible absorption spectroscopy, we were able to demonstrate that this new inhibitor series binds specifically and reversibly to the NC with a peculiar 2:1 stoichiometry. A fluorescence-polarization-based binding assay was also developed in order to monitor the inhibitory activities of this series of inhibitors. To better characterize the structural aspect of inhibitor binding onto NC, we performed NMR studies using unlabeled and (13)C,(15)N-double-labeled NC(1-55) protein constructs. This allowed the determination of the solution structure of a ternary complex characterized by two inhibitor molecules binding to the two zinc knuckles of the NC protein. To the best of our knowledge, this represents the first report of a high-resolution structure of a small-molecule inhibitor bound to NC, demonstrating sub-micromolar potency and moderate antiviral potency with one analogue of the series. This structure was compared with available NC/oligonucleotide complex structures and further underlined the high flexibility of the NC protein, allowing it to adopt many conformations in order to bind its different oligonucleotide/nucleomimetic targets. In addition, analysis of the interaction details between the inhibitor molecules and NC demonstrated how this novel inhibitor series is mimicking the guanosine nucleobases found in many reported complex structures.


Assuntos
Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/metabolismo , HIV-1/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Fármacos Anti-HIV/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores
20.
J Med Chem ; 56(17): 7073-83, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23919803

RESUMO

A simple NMR assay was applied to monitor the tendency of compounds to self-aggregate in aqueous media. The observation of unusual spectral trends as a function of compound concentration appears to be signatory of the formation of self-assemblies. (1)H NMR resonances of aggregating compounds were sensitive to the presence of a range of molecular assemblies in solution including large molecular-size entities, smaller multimers, and mixtures of assembled species. The direct observation of aggregates via unusual NMR spectra also correlated with promiscuous behavior of molecules in off-target in vitro pharmacology assays. This empirical assay can have utility for predicting compound promiscuity and should complement predictive methods that principally rely on the computing of descriptors such as lipophilicity (cLogP) and topological surface area (TPSA). This assay should serve as a practical tool for medicinal chemists to monitor compound attributes in aqueous solution and various pharmacologically relevant media, as demonstrated herein.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Técnicas In Vitro , Sondas Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA