Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(1): 211-7, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25495846

RESUMO

We report that the size dependence of electronic properties at nanosized metal-semiconducting oxide interfaces is significantly affected by the interface atomic structure. The properties of interfaces with two orientations are compared over size range of 20-200 nm. The difference in interface atomic structure leads to electronic structure differences that alter electron transfer paths. Specifically, interfaces with a higher concentration of undercoordinated Ti result in enhanced tunneling due to the presence of defect states or locally reduced tunnel barrier widths. This effect is superimposed on the mechanisms of size dependent properties at such small scales.

2.
J Am Chem Soc ; 137(8): 2939-47, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25664759

RESUMO

In addition to composition, the structure of a catalyst is another fundamental determinant of its catalytic reactivity. Recently, anomalous Ti oxide-rich surface phases of ternary oxides have been stabilized as nonstoichiometric epitaxial overlayers. These structures give rise to different modes of oxygen binding, which may lead to different oxidative chemistry. Through density functional theory investigations and electrochemical measurements, we predict and subsequently show that such a TiO2 double-layer surface reconstruction enhances the oxygen evolving activity of the perovskite-type oxide SrTiO3. Our theoretical work suggests that the improved activity of the restructured TiO2(001) surface toward oxygen formation stems from (i) having two Ti sites with distinct oxidation activity and (ii) being able to form a strong O-O moiety (which reduces overbonding at Ti sites), which is a direct consequence of (iii) having a labile lattice O that is able to directly participate in the reaction. Here, we demonstrate the improvement of the catalytic performance of a well-known and well-studied oxide catalyst through more modern methods of materials processing, predicted through first-principles theoretical modeling.

3.
Nanotechnology ; 24(39): 395703, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24008506

RESUMO

Here we demonstrate the effects of tip loading force on the contact quality and local current-voltage character between conductive AFM tips and individual noble metal nanoparticle-strontium titanate (NP-STO) interfaces. These results show that though contact quality may improve with increased loading force, nanoparticle deformation remains negligible for loading forces in the nN-µN range. Maintaining a moderate loading force in the tens to hundreds of nN therefore enables size-dependent transport of individual NP-STO interfaces to be determined.

4.
Nano Lett ; 12(5): 2414-9, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22545580

RESUMO

Temperature-dependent transport of hybrid structures consisting of gold nanoparticle arrays functionalized by conjugated organic molecules [(4'-thiophenyl)ethynyl-terminated meso-to-meso ethyne-bridged (porphinato)zinc(II) complexes] that possess exceptional optical and electronic properties was characterized. Differential conductance analysis distinguished the functional forms of the temperature and voltage dependences for a range of sample particles and molecular attachments. Thermally assisted tunneling describes transport for all cases and the associated mechanistic parameters can be used to determine the relative roles of activation energy, work function, and so forth. These results provide the basis on which to examine plasmon-influenced conduction in hybrid systems.

5.
Phys Rev Lett ; 109(25): 256802, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368487

RESUMO

This contribution presents a study of the atomic and electronic structure of the (sqrt[5] × sqrt[5])R26.6° surface reconstruction on BaTiO(3) (001) formed by annealing in ultrahigh vacuum at 1300 K. Through density functional theory calculations in concert with thermodynamic analysis, we assess the stability of several BaTiO(3) surface reconstructions and construct a phase diagram as a function of the chemical potential of the constituent elements. Using both experimental scanning tunneling microscopy (STM) and scanning tunneling spectroscopy measurements, we were able to further narrow down the candidate structures, and conclude that the surface is either TiO(2)-Ti(3/5), TiO(2)-Ti(4/5), or some combination, where Ti adatoms occupy hollow sites of the TiO(2) surface. Density functional theory indicates that the defect states close to the valence band are from Ti adatom 3d orbitals (≈ 1.4 eV below the conduction band edge) in agreement with scanning tunneling spectroscopy measurements showing defect states 1.56 ± 0.11 eV below the conduction band minimum (1.03 ± 0.09 eV below the Fermi level). STM measurements show electronic contrast between empty and filled states' images. The calculated local density of states at the surface shows that Ti 3d states below and above the Fermi level explain the difference in electronic contrast in the experimental STM images by the presence of electronically distinctive arrangements of Ti adatoms. This work provides an interesting contrast with the related oxide SrTiO(3), for which the (001) surface (sqrt[5] × sqrt[5])R26.6° reconstruction is reported to be the TiO(2) surface with Sr adatoms.

6.
Nano Lett ; 10(4): 1224-8, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20302281

RESUMO

In this paper, the electrical transport of Au nanoparticle/SrTiO(3) nanointerfaces has been studied. The fabrication method detailed creates atomically smooth SrTiO(3) substrate and controlled Au nanoparticle morphologies to create two unique interfaces. The two interfaces are identifiable in atomic force microscope images allowing us to compare variations in the electronic structure using scanning force spectroscopy. By combining AC imaging with scanning force spectroscopy, the interfaces are effectively probed and left undisturbed. The ideality factor and Schottky barrier height are obtained and compared with one orientation exhibiting deviations from thermionic emission theory while the other showing strong similarities to large area Schottky contacts. It is thus shown that controlling the interface structure is of utmost importance to controlling nanoscale Schottky barriers.

7.
Nano Lett ; 10(10): 4192-9, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20809609

RESUMO

Use of phase transfer catalysts such as 18-crown-6 enables ionic, linear conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES) to efficiently disperse single-walled carbon nanotubes (SWNTs) in multiple organic solvents under standard ultrasonication methods. Steady-state electronic absorption spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) reveal that these SWNT suspensions are composed almost exclusively of individualized tubes. High-resolution TEM and AFM data show that the interaction of PNES with SWNTs in both protic and aprotic organic solvents provides a self-assembled superstructure in which a PNES monolayer helically wraps the nanotube surface with periodic and constant morphology (observed helical pitch length = 10 ± 2 nm); time-dependent examination of these suspensions indicates that these structures persist in solution over periods that span at least several months. Pump-probe transient absorption spectroscopy reveals that the excited state lifetimes and exciton binding energies of these well-defined nanotube-semiconducting polymer hybrid structures remain unchanged relative to analogous benchmark data acquired previously for standard sodium dodecylsulfate (SDS)-SWNT suspensions, regardless of solvent. These results demonstrate that the use of phase transfer catalysts with ionic semiconducting polymers that helically wrap SWNTs provide well-defined structures that solubulize SWNTs in a wide range of organic solvents while preserving critical nanotube semiconducting and conducting properties.

8.
Nano Lett ; 9(4): 1414-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19281229

RESUMO

Amphiphilic, linear conjugated poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) efficiently disperses single-walled carbon nanotubes (SWNTs) under ultrasonication conditions into the aqueous phase. Vis-NIR absorption spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) demonstrate that these solubilized SWNTs are highly individualized. AFM and TEM data reveal that the interaction of PPES with SWNTs gives rise to a self-assembled superstructure in which a polymer monolayer helically wraps the nanotube surface; the observed PPES pitch length (13 +/- 2 nm) confirms structural predictions made via molecular dynamics simulations. This work underscores design elements important for engineering well-defined nanotube-semiconducting polymer hybrid structures.

9.
ACS Nano ; 10(6): 5595-9, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27310728

RESUMO

Nanoscience is one of the fastest growing and most impactful fields in global scientific research. In order to support the continued development of nanoscience and nanotechnology, it is important that nanoscience education be a top priority to accelerate research excellence. In this Nano Focus, we discuss current approaches to nanoscience training and propose a learning design framework to promote the next generation of nanoscientists. Prominent among these are the abilities to communicate and to work across and between conventional disciplines. While the United States has played leading roles in initiating these developments, the global landscape of nanoscience calls for worldwide attention to this educational need. Recent developments in emerging nanoscience nations are also discussed. Photo credit: Jae Hyeon Park.

10.
ACS Nano ; 8(5): 4465-73, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24742245

RESUMO

Coexistence of surface reconstructions is important due to the diversity in kinetic and thermodynamic processes involved. We identify the coexistence of kinetically accessible phases that are chemically identical and form coherent interfaces. Here, we establish the coexistence of two phases, c(2 × 2) and c(4 × 4), in BaTiO3(001) with atomically resolved Scanning Tunneling Microscopy (STM). First-principles thermodynamic calculations determine that TiO adunits and clusters compose the surfaces. We show that TiO diffusion results in a kinetically accessible c(2 × 2) phase, while TiO clustering results in a kinetically and thermodynamically stable c(4 × 4) phase. We explain the formation of domains based on the diffusion of TiO units. The diffusion direction determines the observed 1D coherent interfaces between c(2 × 2) and c(4 × 4) reconstructions. We propose atomic models for the c(2 × 2), c(4 × 4), and 1D interfaces.

11.
ACS Nano ; 8(12): 12755-62, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25486546

RESUMO

The ability to control the molecular packing and nanoscale morphology of conjugated polymers is important for many of their applications. Here, we report the fabrication of well-ordered nanoarrays of conjugated polymers, based on the self-assembly of conjugated block copolymers at the air-liquid interface. We demonstrate that the self-assembly of poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) at the air-water interface leads to large-area free-standing films of well-aligned P3HT nanowires. Block copolymers with high P3HT contents (82-91%) formed well-ordered nanoarrays at the interface. The fluidic nature of the interface, block copolymer architecture, and rigid nature of P3HT were necessary for the formation of well-ordered nanostructures. The free-standing films formed at the interface can be readily transferred to arbitrary solid substrates. The P3HT-b-PEG films are integrated in field-effect transistors and show orders of magnitude higher charge carrier mobility than spin-cast films, demonstrating that the air-liquid interfacial self-assembly is an effective thin film fabrication tool for conjugated block copolymers.

12.
Rev Sci Instrum ; 84(7): 073707, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23902076

RESUMO

Developments in solid oxide fuel cells (SOFCs) continue to be one of the most intensely studied areas involving energy-producing systems, in an attempt to partially alleviate rapidly growing energy concerns. Direct, experimental observation of the governing electrochemical processes have remained largely elusive, due to high operating temperatures in the range of 400 °C-1000 °C. Here we outline the design and development of a miniature environmental chamber that enables a standard atomic force microscopes access to realistic SOFC operating conditions (T = 600 °C) for direct interrogation of electrochemical phenomena within SOFC cross-sections.

13.
ACS Nano ; 7(7): 6330-6, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23782103

RESUMO

The function of systems and devices in many technologically important applications depends on dynamic processes in complex environments not accessible by structure and property characterization tools. Fuel cells represent an example in which interactions occur under extreme conditions: high pressure, high temperature, in reactive gas environments. Here, scanning surface potential microscopy is used to quantify local potential at electrode/electrolyte interfaces in operating solid oxide fuel cells at 600 °C. Two types of fuel cells are compared to demonstrate two mechanisms of ionic transport at interfaces. Lanthanum strontium ferrite-yttria-stabilized zirconia (LSF-YSZ) and lanthanum strontium manganite-yttria-stabilized zirconia (LSM-YSZ) cross-sectional electrode assemblies were measured to compare mixed ionic electronic conducting and electronic conducting mechanisms. Direct observation of the active zones in these devices yields characteristic length scales and estimates of activation barrier changes.


Assuntos
Fontes de Energia Elétrica , Eletroquímica/instrumentação , Eletroquímica/métodos , Eletrodos , Metais/química , Óxidos/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
14.
ACS Nano ; 7(5): 4479-86, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23550717

RESUMO

Plasmonic nanostructures can induce a number of interesting responses in devices. Here we show that hot electrons can be extracted from plasmonic particles and directed into a molecular electronic device, which represents a new mechanism of transfer from light to electronic transport. To isolate this phenomenon from alternative and sometimes simultaneous mechanisms of plasmon-exciton interactions, we designed a family of hybrid nanostructure devices consisting of Au nanoparticles and optoelectronically functional porphyin molecules that enable precise control of electronic and optical properties. Temperature- and wavelength-dependent transport measurements are analyzed in the context of optical absorption spectra of the molecules, the Au particle arrays, and the devices. Enhanced photocurrent associated with exciton generation in the molecule is distinguished from enhancements due to plasmon interactions. Mechanisms of plasmon-induced current are examined, and it is found that hot electron generation can be distinguished from other possibilities.

15.
ACS Nano ; 5(6): 4835-42, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21612231

RESUMO

A novel approach to energy harvesting and biosensing devices would exploit optoelectronic processes found in proteins that occur in nature. However, in order to design such systems, the proteins need to be attached to electrodes and the optoelectronic properties in nonliquid (ambient) environments must be understood at a fundamental level. Here we report the simultaneous detection of electron transport and the effect of optical absorption on dielectric polarizability in oriented peptide single molecular layers. This characterization requires a peptide design strategy to control protein/electrode interface interactions, to allow peptide patterning on a substrate, and to induce optical activity. In addition, a new method to probe electronic, dielectric, and optical properties at the single molecular layer level is demonstrated. The combination enables a quantitative comparison of the change in polarization volume between the ground state and excited state in a single molecular layer in a manner that allows spatial mapping relevant to ultimate device design.


Assuntos
Técnicas Biossensoriais , Nanotecnologia/métodos , Absorção , Sequência de Aminoácidos , Capacitância Elétrica , Eletrodos , Eletrônica , Grafite , Dados de Sequência Molecular , Óptica e Fotônica , Peptídeos/química , Fotoquímica/métodos , Proteínas/química
16.
ACS Nano ; 5(1): 640-6, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21162539

RESUMO

Oxide heterostructure superlattices constitute a new family of materials with tunable ferroelectric properties. While theoretical models predict the presence of nanosized ferroelectric domains in these films, they had not been observed as the magnitude of the response functions challenges the limits of experimental detection. Here, a new protocol in a precise variant of piezoforce microscopy is used to image domains in BaTiO(3)/SrTiO(3) superlattices. Comparison of experimentally determined polarization to predictions of phase-field calculations is in quantitative agreement. Additionally, a combination of theory and experiment is used to determine the magnitude of internal electric field within the thin film, in a procedure that can be generalized to all ferroelectric films.

17.
ACS Nano ; 4(2): 1019-25, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20095631

RESUMO

Metal nanoparticles (NPs) respond to electromagnetic waves by creating surface plasmons (SPs), which are localized, collective oscillations of conduction electrons on the NP surface. When interparticle distances are small, SPs generated in neighboring NPs can couple to one another, creating intense fields. The coupled particles can then act as optical antennae capturing and refocusing light between them. Furthermore, a molecule linking such NPs can be affected by these interactions as well. Here, we show that by using an appropriate, highly conjugated multiporphyrin chromophoric wire to couple gold NP arrays, plasmons can be used to control electrical properties. In particular, we demonstrate that the magnitude of the observed photoconductivity of covalently interconnected plasmon-coupled NPs can be tuned independently of the optical characteristics of the molecule-a result that has significant implications for future nanoscale optoelectronic devices.

18.
Science ; 339(6118): 401-2, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23349277
19.
Phys Rev Lett ; 101(3): 036102, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18764267

RESUMO

We report a series of new surface reconstructions on BaTiO3(001) as a function of environmental conditions, determined via scanning tunneling microscopy and low energy electron diffraction. Using density functional theory calculations and thermodynamic modeling, we construct a surface phase diagram and determine the atomic structures of the thermodynamically stable phases. Excellent agreement is found between the predicted phase diagram and experiment. The results enable prediction of surface structures and properties under the entire range of accessible environmental conditions.

20.
Phys Rev Lett ; 100(5): 056805, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18352410

RESUMO

We present real-time transmission electron microscopy of nanogap formation by feedback controlled electromigration that reveals a remarkable degree of crystalline order. Crystal facets appear during feedback controlled electromigration indicating a layer-by-layer, highly reproducible electromigration process avoiding thermal runaway and melting. These measurements provide insight into the electromigration induced failure mechanism in sub-20 nm size interconnects, indicating that the current density at failure increases as the width decreases to approximately 1 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA