Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(19): 24605-24617, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32601860

RESUMO

Flue gases contain SO2 and NOx that can be treated together for elemental sulphur recovery in bioscrubbers, a technology that couples physical-chemical and biological processes for gaseous emissions treatment in a more economic manner than classical absorption. Sequential wet absorption of SO2 and NOx from flue gas is thoroughly studied in this work in a two-stage bioscrubber towards elemental sulphur valorisation pursuing reuse of biological process effluents as absorbents. The optimal operating conditions required for SO2 and NOx absorption in two consecutive spray absorbers were defined using NaOH-based absorbents. Overall, removal efficiencies of 98.9% and 55.9% for SO2 and NOx abatement were obtained in two in-series scrubbers operated under a gas contact time of 1 and 100 s, and a liquid-to-gas ratio of 7.5 and 15 L m-3, respectively. Higher NOx removal efficiency to clean gas emission was obtained by oxidants dosing in the absorber for NOx absorption. High NaHCO3 concentration in a two-stage bioscrubber effluent was exploited as alkaline absorbent for flue gas treatment. The performance of scrubbers using an absorbent mimicking a reused effluent exhibited the same removal efficiencies than those observed using NaOH solutions. In addition, the reuse of bioprocess effluent reduced reagents' consumption by a 63.7%. Thus, the two-stage bioscrubber proposed herein offers an environmentally friendly and economic alternative for flue gas treatment.


Assuntos
Poluentes Atmosféricos , Dióxido de Enxofre , Poluentes Atmosféricos/análise , Oxidantes , Enxofre , Dióxido de Enxofre/análise
2.
Water Res ; 102: 551-560, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27423049

RESUMO

Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 µm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density.


Assuntos
Biofilmes , Reprodutibilidade dos Testes , Reatores Biológicos , Difusão , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA