RESUMO
During infections with the malaria parasites Plasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In other Plasmodium species that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al., Science 368, 746-753 (2020); Smith et al., Science 368, 754-759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, because Plasmodium cycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected with P. vivax to examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host-parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling.
Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium , Humanos , Camundongos , Animais , Interações Hospedeiro-Parasita , Malária/parasitologia , Plasmodium/genéticaRESUMO
BACKGROUND: New anti-malarial drugs are needed urgently to address the increasing challenges of drug-resistant falciparum malaria. Two rhinacanthin analogues containing a naphthoquinone moiety resembling atovaquone showed promising in-vitro activity against a P. falciparum laboratory reference strain (K1). The anti-malarial activity of these 2 compounds was further evaluated for P. falciparum field isolates from an area of multi-drug resistance in Northeast Thailand. METHODS: Using a pLDH enzyme-linked immunosorbent assay, four P. falciparum isolates from Northeast Thailand in 2018 were tested for in vitro sensitivity to the two synthetic rhinacanthin analogues 1 and 2 as well as established anti-malarials. Mutations in the P. falciparum cytochrome b gene, a marker for atovaquone (ATQ) resistance, were genotyped in all four field isolates as well as 100 other clinical isolates from the same area using PCR-artificial Restriction Fragment Length Polymorphisms. Pfkelch13 mutations, a marker for artemisinin (ART) resistance, were also examined in all isolates. RESULTS: The 50% inhibitory concentrations (IC50) of P. falciparum field isolates for rhinacanthin analogue 1 was 321.9-791.1 nM (median = 403.1 nM). Parasites were more sensitive to analogue 2: IC50 48.6-63.3 nM (median = 52.2 nM). Similar results were obtained against P. falciparum reference laboratory strains 3D7 and W2. The ART-resistant IPC-5202 laboratory strain was more sensitive to these compounds with a median IC50 45.9 and 3.3 nM for rhinacanthin analogues 1 and 2, respectively. The ATQ-resistant C2B laboratory strain showed high-grade resistance towards both compounds (IC50 > 15,000 nM), and there was a strong positive correlation between the IC50 values for these compounds and ATQ (r = 0.83-0.97, P < 0.001). There were no P. falciparum cytochrome b mutations observed in the field isolates, indicating that P. falciparum isolates from this area remained ATQ-sensitive. Pfkelch13 mutations and the ring-stage survival assay confirmed that most isolates were resistant to ART. CONCLUSIONS: Two rhinacanthin analogues showed parasiticidal activity against multi-drug resistant P. falciparum isolates, although less potent than ATQ. Rhinacanthin analogue 2 was more potent than analogue 1, and can be a lead compound for further optimization as an anti-malarial in areas with multidrug resistance.
Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Atovaquona/uso terapêutico , Tailândia , Citocromos b/genética , Malária Falciparum/parasitologia , Resistência a MedicamentosRESUMO
BACKGROUND: The rise in Plasmodium falciparum resistance to dihydroartemisinin-piperaquine (DHA-PPQ) treatment has been documented in the Greater Mekong Subregion with associations with mutations in the P. falciparum chloroquine resistance transporter (pfcrt) and plasmepsin 2 (pfpm2) genes. However, it is unclear whether other genes also play a role with PPQ resistance, such as the E415G mutation in the exonuclease (pfexo) gene. The aim of this study was to investigate the role of this mutation in PPQ resistance by generating transgenic parasites expressing the pfexo-E415G mutant allele. METHODS: Transgenic parasite clones carrying the E415G mutation in PfEXO of the B5 isolate were derived by CRISPR-Cas9 gene editing and verified using PCR and gene sequencing. Polymorphisms of pfkelch-13, pfcrt, and pfexo were examined by PCR while the copy number variations of pfpm2 were examined by both relative quantitative real-time PCR and the duplication breakpoint assay. Drug sensitivity against a panel of antimalarials, the ring-stage survival assay (RSA), the PPQ survival assay (PSA), and bimodal dose-response curves were used to evaluate antimalarial susceptibility. RESULTS: The transgenic line, B5-rexo-E415G-B8, was successfully generated. The PPQ-IC90, %PPQ survival, and the bimodal dose-response clearly showed that E415G mutation in PfEXO of B5 isolate remained fully susceptible to PPQ. Furthermore, growth assays demonstrated that the engineered parasites grew slightly faster than the unmodified parental isolates whereas P. falciparum isolates harbouring pfkelch-13, pfcrt, and pfexo mutations with multiple copies of pfpm2 grew much more slowly. CONCLUSIONS: Insertion of the E415G mutation in PfEXO did not lead to increased PPQ-IC90 and %PPQ survival, suggesting that this mutation alone may not be associated with PPQ resistance, but could still be an important marker if used in conjunction with other markers for monitoring PPQ-resistant parasites. The results also highlight the importance of monitoring and evaluating suspected genetic mutations with regard to parasite fitness and resistance.
Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Quinolinas , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Variações do Número de Cópias de DNA , Resistência a Medicamentos/genética , Exonucleases/genética , Exonucleases/farmacologia , Exonucleases/uso terapêutico , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Mutação , Fosfodiesterase I/genética , Fosfodiesterase I/farmacologia , Piperazinas , Plasmodium falciparum , Mutação Puntual , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêuticoRESUMO
BACKGROUND: Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009 to 2017. METHODS: The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative polymerase chain reaction was used to estimate pfpm2 and pfmdr1 copy number. RESULTS: Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being outcompeted by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single-copy pfpm2. CONCLUSIONS: The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.
Assuntos
Antimaláricos/farmacologia , Biomarcadores/metabolismo , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Piperazinas/uso terapêutico , Proteínas de Protozoários/genética , Quinolinas/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Camboja/epidemiologia , Resistência a Medicamentos/efeitos dos fármacos , Malária Falciparum/epidemiologia , Mefloquina/uso terapêutico , Mutação/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Prevalência , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 (pfpm2), exonuclease (pfexo) and chloroquine resistance transporter (pfcrt) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy. METHODS: To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined. RESULTS: The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovaquone-proguanil combinations revealed synergistic antimalarial activity. CONCLUSIONS: Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.
Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Genótipo , Fenótipo , Plasmodium falciparum/genética , Quinolinas/farmacologia , Camboja , Marcadores Genéticos , Plasmodium falciparum/efeitos dos fármacosRESUMO
Infections caused by antimicrobial-resistant Acinetobacter baumannii pose a significant threat to human health, particularly in the context of hospital-acquired infections. As existing antibiotics lose efficacy against Acinetobacter isolates, there is an urgent need for the development of novel antimicrobial agents. In this study, we assessed 400 structurally diverse compounds from the Medicines for Malaria Pandemic Response Box for their activity against two clinical isolates of A. baumannii: A. baumannii 5075, known for its extensive drug resistance, and A. baumannii QS17-1084, obtained from an infected wound in a Thai patient. Among the compounds tested, seven from the Pathogen box exhibited inhibitory effects on the in vitro growth of A. baumannii isolates, with IC50s ≤ 48 µM for A. baumannii QS17-1084 and IC50s ≤ 17 µM for A. baumannii 5075. Notably, two of these compounds, MUT056399 and MMV1580854, shared chemical scaffolds resembling triclosan. Further investigations involving drug combinations identified five synergistic drug combinations, suggesting potential avenues for therapeutic development. The combination of MUT056399 and brilacidin against A. baumannii QS17-1084 and that of MUT056399 and eravacycline against A. baumannii 5075 showed bactericidal activity. These combinations significantly inhibited biofilm formation produced by both A. baumannii strains. Our findings highlight the drug combinations as promising candidates for further evaluation in murine wound infection models against multidrug-resistant A. baumannii. These compounds hold potential for addressing the critical need for effective antibiotics in the face of rising antimicrobial resistance.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Humanos , Animais , Camundongos , Sinergismo Farmacológico , Biofilmes/efeitos dos fármacos , Combinação de Medicamentos , Avaliação Pré-Clínica de MedicamentosRESUMO
Cone snail venoms are a rich source of peptides, many of which are potent and selective modulators of ion channels and receptors. Here we report the isolation and characterization of two novel conotoxins from the venom of Conus imperialis. These two toxins contain a novel cysteine framework, C-C-C-CC-C, which has not been found in other conotoxins described to date. We name it framework XXIII and designate the two toxins im23a and im23b; cDNAs of these toxins exhibit a novel signal peptide sequence, which defines a new K-superfamily. The disulfide connectivity of im23a has been mapped by chemical mapping of partially reduced intermediates and by NMR structure calculations, both of which establish a I-II, III-IV, V-VI pattern of disulfide bridges. This pattern was also confirmed by synthesis of im23a with orthogonal protection of individual cysteine residues. The solution structure of im23a reveals that im23a adopts a novel helical hairpin fold. A cluster of acidic residues on the surface of the molecule is able to bind calcium. The biological activity of the native and recombinant peptides was tested by injection into mice intracranially and intravenously to assess the effects on the central and peripheral nervous systems, respectively. Intracranial injection of im23a or im23b into mice induced excitatory symptoms; however, the biological target of these new toxins has yet to be identified.
Assuntos
Conotoxinas/química , Caramujo Conus/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Conotoxinas/genética , Conotoxinas/toxicidade , Caramujo Conus/genética , Dissulfetos/química , Espectroscopia de Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Relação Estrutura-AtividadeRESUMO
Human lysyl-tRNA synthetase (hLysRS) is known to interact directly with human immunodeficiency virus type-1 (HIV-1) GagPol polyproteins, and both hLysRS with tRNA(Lys3) are selectively packaged into emerging HIV-1 viral particles. This packaging process appears to be mediated by contact between the motif 1 helix h7 of hLysRS and the C-terminal dimerization domain of the HIV-1 capsid protein (CA) segment of Gag or GagPol. Given similarities between hLysRS and Escherichia coli (E. coli) heat shock protein LysU, we investigate if LysU might be an hLysRS surrogate for interactions with Gag or GagPol proteins. We report on a series of studies involving three CA C-domains: CA(146) (intact domain), CA(151) (truncated domain), and CA(146)-M185A (M185A, CA dimer interface mutant). After confirming that LysU and CA(146) are dimeric whilst CA(151) and M185A remain monomeric, we use glutathione S-transferase (GST) pull-down assays to demonstrate the existence of specific interactions between LysU and all three CA-C domains. By means of (1)H-NMR titration experiments, we estimate K(d) values of 50 µM for the interaction between LysU and CA(146) or >500 µM for interactions between LysU and CA(151) or LysU and M185A. The reason for these binding affinity differences may be that interactions between LysU and CA(146) take place through dimer-dimer interactions resulting in a α(2)ß(2) heterotetramer. LysU/CA-C protein interactions are weaker than those reported between hLysRS and the Gag, CA or CA(146) proteins, and hLysRS/Gag binding interactions have also been suggested to involve only αß heterodimer formation. Nevertheless, we propose that LysU could act as a surrogate for hLysRS with respect to Gag and GagPol polyprotein interactions although arguably not sufficiently for LysU to act as an inhibitor of the HIV-1 life cycle without further adaptation or mutation. Potentially, LysU and/or LysU mutants could represent a new class of anti-HIV-1 therapeutic agent.
Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli , HIV-1/metabolismo , Lisina-tRNA Ligase/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Lisina-tRNA Ligase/química , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de AminoácidosRESUMO
The assembly process in HIV-1 has become a new target for infected HIV-1 patient treatment. During this process, the viral genomic RNA and precursor protein are assembled at the permeable membrane and tRNA(Lys3) is packed into a new virion as the primer for the reverse transcription process. The packaging of tRNA(Lys3) arises from the interaction of HIV-1 Gag and hLysRS. To better understand the formation of this ternary complex, the interaction study of LysRS-peptide complex using a combination of circular dichroism, molecular dockings and molecular dynamic simulations are reported here. The circular dichroism experiments confirm that the sh-H4 peptide, containing 10 amino acid residues from helix4 of C-terminal domain of HIV-1 capsid protein (CA-CTD), can be induced to form a helical structure upon binding to hLysRS. Molecular docking analysis of LysRS (hLysRS and eLysRS) with the sh-H4 peptide revealed the two possible arrangements of the peptide upon the binding event. Molecular dynamics based free energy calculations of the peptide binding process are used to determine the interactions as well as the important amino acid residues involving in binding. The peptide is found to lie against helix 7 of LysRS in a perpendicular fashion. Additionally, the peptide preferably interacts with hLysRS over eLysRS including strong hydrogen bond interactions between R247-Q219 and R241-E212. Interestingly, these amino acid residues are found in both LysRS and CA-CTD. These important residues appear to be a vital feature of the LysRS-CA-CTD complex and may ultimately lead to the inhibitor design to block the Gag-LysRS interaction.
Assuntos
Lisina-tRNA Ligase/metabolismo , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Precursores de Proteínas/metabolismo , Dicroísmo Circular , Sequência Conservada/fisiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Ligação de Hidrogênio , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Fragmentos de Peptídeos/química , Ligação Proteica/fisiologia , Precursores de Proteínas/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Aminoacil-RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Trifluoretanol/químicaRESUMO
Fragrant rice (Oryza sativa L.) betaine aldehyde dehydrogenase 2 (OsBADH2) is a key enzyme in the synthesis of fragrance aroma compounds. The extremely low activity of OsBADH2 in catalyzing the oxidation of acetaldehyde is believed to be crucial for the accumulation of the volatile compound 2-acetyl-1-pyrroline (2AP) in many scented plants, including fragrant rice. Recombinant fragrant rice OsBADH2 was expressed in Escherichia coli as an N-terminal hexahistidine fusion protein, purified using Ni Sepharose affinity chromatography and crystallized using the microbatch method. Initial crystals were obtained within 24 h using 0.1 M Tris pH 8.5 with 30%(w/v) PEG 4000 and 0.2 M magnesium chloride as the precipitating agent at 291 K. Crystal quality was improved when the enzyme was cocrystallized with NAD(+). Improved crystals were grown in 0.1 M HEPES pH 7.4, 24%(w/v) PEG 4000 and 0.2 M ammonium chloride and diffracted to beyond 2.95 Å resolution after being cooled in a stream of N(2) immediately prior to X-ray diffraction experiments. The crystals belonged to space group C222(1), with unit-cell parameters a = 66.03, b = 183.94, c = 172.28 Å. An initial molecular-replacement solution has been obtained and refinement is in progress.
Assuntos
Betaína-Aldeído Desidrogenase/química , Oryza/enzimologia , Betaína-Aldeído Desidrogenase/isolamento & purificação , Cristalografia por Raios X , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
Malaria remains a public health problem in Thailand, especially along its borders where highly mobile populations can contribute to persistent transmission. This study aimed to determine resistant genotypes and phenotypes of 112 Plasmodium falciparum isolates from patients along the Thai-Cambodia border during 2013-2015. The majority of parasites harbored a pfmdr1-Y184F mutation. A single pfmdr1 copy number had CVIET haplotype of amino acids 72-76 of pfcrt and no pfcytb mutations. All isolates had a single pfk13 point mutation (R539T, R539I, or C580Y), and increased % survival in the ring-stage survival assay (except for R539I). Multiple copies of pfpm2 and pfcrt-F145I were detected in 2014 (12.8%) and increased to 30.4% in 2015. Parasites containing either multiple pfpm2 copies with and without pfcrt-F145I or a single pfpm2 copy with pfcrt-F145I exhibited elevated IC90 values of piperaquine. Collectively, the emergence of these resistance patterns in Thailand near Cambodia border mirrored the reports of dihydroartemisinin-piperaquine treatment failures in the adjacent province of Cambodia, Oddar Meanchey, suggesting a migration of parasites across the border. As malaria elimination efforts ramp up in Southeast Asia, host nations militaries and other groups in border regions need to coordinate the proposed interventions.
Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Adolescente , Adulto , Idoso , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/uso terapêutico , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Quimioterapia Combinada , Doenças Endêmicas , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos/genética , Humanos , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Parasitemia/epidemiologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Quinolinas/administração & dosagem , Quinolinas/uso terapêutico , Tailândia/epidemiologia , Adulto JovemRESUMO
To survive within a red blood cell (RBC), malaria parasites establish striking modifications to the permeability, rigidity and cytoadherence properties of the host cell. This is mediated by the export of hundreds of proteins from the parasite into the erythrocyte. Plasmodium falciparum plasmepsin V (PfPMV), is an ER resident aspartic protease that processes proteins for export into the host erythrocyte, plays a crucial role in parasite virulence and survival and is considered a potential malaria drug target. Most attempts at its heterologous expression in Escherichia coli have resulted in mainly the production of insoluble proteins. In this study, we employed a multipurpose fusion tag to improve the production of PfPMV in E. coli. Recombinant PfPMVm, comprising residues 84-521, was substantially obtained in soluble form and could be purified in a single step, yielding a 3.7-fold increase in purified PfPMVm compared to previous reports. Additionally, we have mutated the catalytic residues (D118N and D365N), individually and together, and the unpaired cysteine residue C178 to evaluate the effects on catalytic efficiency. Mutation of D365 had more pronounced effects on the catalytic efficiency than that of D118, suggesting that the D365 may act as a catalytic nucleophile to activate the water molecule. The importance of C178 was also confirmed by the inhibition by metal ions, indicating that C178 is partially involved in the substrate recognition. Collectively, our results describe an improved system to produce recombinant PfPMVm in E. coli and dissect the amino acids involved in catalysis and substrate recognition.
Assuntos
Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Catálise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Engenharia de Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Especificidade por SubstratoRESUMO
Plasmodium proteases play both regulatory and effector roles in essential biological processes in this important pathogen and have long been investigated as drug targets. Plasmepsin V from P. falciparum (PfPMV) is an essential protease that processes proteins for export into the host erythrocyte and is a focus of ongoing drug development efforts. In the present study, recombinant protein production, inhibition assays, binding studies as well as molecular docking and molecular dynamics simulation studies were used to investigate the mode of binding of a PEXEL-based peptidomimetic and naphthoquinone compounds to PfPMV. Consistent with our previous study, refolded PfPMVs were produced with functional characteristics similar to the soluble counterpart. Naphthoquinone compounds inhibited PfPMV activity by 50% at 50⯵M but did not affect pepsin activity. The IC50 values of compounds 31 and 37 against PfPMV were 22.25 and 68.94⯵M, respectively. Molecular dynamics simulations revealed that PEXEL peptide interacted with PfPMV active site residues via electrostatic interactions while naphthoquinone binding preferred van der Waal interactions. P1'-Ser of the PfEMP2 substrate formed an additional H-bond with Asp365 promoting the catalytic efficiency. Additionally, the effect of metal ions on the secondary structure of PfPMV was examined. Our results confirmed that Hg2+ ions reversibly induced the changes in secondary structure of the protein whereas Fe3+ ions induced irreversibly. No change was observed in the presence of Ca2+ ions. Overall, the results here suggested that naphthoquinone derivatives may represent another source of antimalarial inhibitors targeting aspartic proteases but further chemical modifications are required.
Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Naftoquinonas/farmacologia , Peptidomiméticos , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Animais , Ácido Aspártico Endopeptidases/química , Cálcio/metabolismo , Catálise , Simulação por Computador , Corantes Fluorescentes , Humanos , Ligação de Hidrogênio , Técnicas In Vitro , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftoquinonas/química , Plasmodium falciparum/enzimologia , Inibidores de Proteases/química , Estrutura Secundária de Proteína , Relação Estrutura-AtividadeRESUMO
The malaria parasite replicates within erythrocytes. The pathogenesis of clinical malaria is in large part due to the capacity of the parasite to remodel its host cell. To do this, intraerythrocytic stages of Plasmodium falciparum export more than 300 proteins that dramatically alter the morphology of the infected erythrocyte as well as its mechanical and adhesive properties. P. falciparum plasmepsin V (PfPMV) is an aspartic protease that processes proteins for export into the host erythrocyte and is thought to play a key role in parasite virulence and survival. However, although standard techniques for gene disruption as well as conditional protein knockdown have been previously attempted with the pfpmv gene, complete gene removal or knockdown was not achieved so direct genetic proof that PMV is an essential protein has not been established. Here we have used a conditional gene excision approach combining CRISPR-Cas9 gene editing and DiCre-mediated recombination to functionally inactivate the pfpmv gene. The resulting mutant parasites displayed a severe growth defect. Detailed phenotypic analysis showed that development of the mutant parasites was arrested early in the ring-to-trophozoite transition in the erythrocytic cycle following gene excision. Our findings are the first to elucidate the effects of PMV gene disruption, showing that it is essential for parasite viability in asexual blood stages. The mutant parasites can now be used as a platform to further dissect the Plasmodium protein export pathway.
Assuntos
Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/fisiologia , Plasmodium falciparum/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Sistemas CRISPR-Cas , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Humanos , Mutação/genética , Plasmodium falciparum/genética , Inibidores de Proteases , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismoRESUMO
Heat shock inducible lysyl-tRNA synthetase of Escherichia coli (LysU) is known to be a highly efficient diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) synthase. However, we use an ion-exchange HPLC technique to demonstrate that active LysU mixtures actually have a dual catalytic activity, initially producing Ap4A from ATP, before converting that tetraphosphate to a triphosphate. LysU appears to be an effective diadenosine 5',5'''-P1,P3-triphosphate (Ap3A) synthase. Mechanistic investigations reveal that Ap3A formation requires: (a) that the second step of Ap4A formation is slightly reversible, thereby leading to a modest reappearance of adenylate intermediate; and (b) that phosphate is present to trap the intermediate (either as inorganic phosphate, as added ADP, or as ADP generated in situ from inorganic phosphate). Ap3A forms readily from Ap4A in the presence of such phosphate-based adenylate traps (via a 'reverse-trap' mechanism). LysU is also clearly demonstrated to exist in a phosphorylated state that is more physically robust as a catalyst of Ap4A formation than the nonphosphorylated state. However, phosphorylated LysU shows only marginally improved catalytic efficiency. We note that Ap3A effects have barely been studied in prokaryotic organisms. By contrast, there is a body of literature that describes Ap3A and Ap4A having substantially different functions in eukaryotic cells. Our data suggest that Ap3A and Ap4A biosynthesis could be linked together through a single prokaryotic dual 'synthase' enzyme. Therefore, in our view there is a need for new research into the effects and impact of Ap3A alone and the intracellular [Ap3A]/[Ap4A] ratio on prokaryotic organisms.
Assuntos
Fosfatos de Dinucleosídeos/biossíntese , Lisina-tRNA Ligase/metabolismo , Western Blotting , Catálise , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Ressonância Magnética Nuclear Biomolecular , FosforilaçãoRESUMO
Plasmepsin V from Plasmodium falciparum (PfPMV) is responsible for the cleavage of the Plasmodium export element (PEXEL) motif at the N-terminus of several hundreds of the exported proteins. PfPMV is necessary for parasite viability and has become a novel promising target for antimalarial therapy. The first recombinant expression of soluble, active PfPMV as thioredoxin fusion proteins is reported herein. Two truncated forms of PfPMV were fused to thioredoxin (Trx) to generate Trx-PfPMVp37 and Trx-PfPMVm84. The fusion proteins were successfully purified using Ni(2+) affinity chromatography in combination with ATP treatment to eliminate Escherichia coli HSP60 contaminant. Trx-PfPMVm84 could hydrolyze the PEXEL-containing peptides more efficiently than Trx-PfPMVp37. Interestingly, both Trx-PfPMVs preferred to cleave PfEMP2 peptide over HRPII peptide. The replacement of Ser with Val or Glu at P1' position created a substrate with 75% reduction in the enzyme activity, whereas the substitution of Ile with Lys or Glu at P2 position reduced the cleavage efficiency by 30%. The activity of Trx-PfPMVm84 was inhibited by PMSF and nelfinavir but not by pepstatin A. After the removal of Trx domain, activities of both enzymes toward PfEMP2 and HRPII peptides were fitted to the Michaelis-Menten model to determine kinetic parameters. The Km values toward both peptides were apparently much lower than the previously reported data although with similar kcat values. Along with an improved PfPMV preparation protocol, these findings have provided insights into its substrate specificity at P2 and P1' positions as well as interactions among the enzyme, substrates, and inhibitors.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Plasmodium falciparum/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/isolamento & purificação , Domínio Catalítico , Cromatografia de Afinidade , Escherichia coli/genética , Expressão Gênica , Cinética , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Especificidade por SubstratoRESUMO
Plasmepsin V (PMV) is a Plasmodium aspartic protease responsible for the cleavage of the Plasmodium export element (PEXEL) motif, which is an essential step for export of PEXEL containing proteins and crucial for parasite viability. Here we describe the genetic polymorphism of Plasmodium vivax PMV (PvPMV) Thailand isolates, followed by cloning, expression, purification and characterization of PvPMV-Thai, presenting the pro- and mature-form of PvPMV-Thai. With our refolding and purification method, approximately 1mg of PvPMV-Thai was obtained from 1g of washed inclusion bodies. Unlike PvPMV-Ind and PvPMV-Sal-1, PvPMV-Thai contains a four-amino acid insertion (SVSE) at residues 246-249. We have confirmed that this insertion did not interfere with the catalytic activity as it is located in the long loop (R241-E272) pointing away from the substrate-binding pocket. PvPMV-Thai exhibited similar activity to PfPMV counterparts in which PfEMP2 could be hydrolyzed more efficiently than HRPII. Substrate specificity studies at P1' showed that replacing Ser by Val or Glu of the PfEMP2 peptide markedly reduced the enzyme activity of PvPMV similar to that of PfPMV whereas replacing His by Val or Ser of the HRPII peptide increased the cleavage activity. However, the substitution of amino acids at the P2 position with Glu dramatically reduced the cleavage efficiency by 80% in PvPMV in contrast to 30% in PfPMV, indicating subtle differences around the S2 binding pocket of both PfPMV and PvPMV. Four inhibitors were also evaluated for PvPMV-Thai activity including PMSF, pepstatin A, nelfinavir, and menisporopsin A-a macrocyclic polylactone. We are the first to show that menisporopsin A partially inhibits the PvPMV-Thai activity at high concentration. Taken together, these findings provide insights into recombinant production, substrate specificity and inhibition of PvPMV-Thai.
Assuntos
Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Malária Vivax/parasitologia , Plasmodium vivax/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/isolamento & purificação , Estabilidade Enzimática , Eritrócitos/parasitologia , Humanos , Cinética , Plasmodium vivax/química , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Especificidade por Substrato , TailândiaRESUMO
Numerous naphthoquinone derivatives, such as rhinacanthins function as anticancer drugs, which target hTopoII. The structure of hTopoII contains both an ATPase domain and a DNA binding domain. Several drugs bind to either one or both of these domains, thus modifying the activity of hTopoII. The naphthoquinone esters and amides used in this study showed that their hTopoIIα inhibitory activity was inversely proportional to ATP concentration. In order to better characterize the inhibitory action of these compounds, sufficient quantities of soluble functional hTopoII-ATPase domain were required. Therefore, both the alpha and beta isoforms of the hTopoII-ATPase domain were over-expressed in Escherichia coli. The hTopoIIα-ATPase activity was reduced in the presence of naphthoquinone derivatives. Additionally, a molecular docking study revealed that the selected naphthoquinone ester and amide bind to the ATP-binding domain of hTopoIIα. Collectively, the results here provide for the first time a novel insight into the interaction between naphthoquinone esters and amides, and the ATP-binding domain of hTopoIIα. The further elucidation of the mechanism of action of the naphthoquinone esters and amides inhibitory activity is essential.
Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Naftoquinonas/farmacocinética , Estrutura Terciária de Proteína/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Simulação de Acoplamento Molecular/métodos , Naftoquinonas/química , Isoformas de Proteínas/metabolismoRESUMO
The heat-inducible lysyl-tRNA synthetase from Escherichia coli (LysU; EC6/1/1/6.html) converts ATP to diadenosine tri- and tetraphosphates (Ap(3)A/Ap(4)A) in the presence of L-lysine/Mg(2+)/Zn(2+). To understand LysU in more detail, 26 mutants were prepared: six of E264, four of R269 and sixteen mutants by alanine-scanning of the inner shell/motif 2 loop. In the presence of glycerol and absence of exogenously added Zn(2+)/L-lysine, we unexpectedly found that E264K catalysed the production of glycerol-3-phosphate, powered by ATP turnover to ADP. E264Q and E264N are also capable of this activity, but all three show little formation of Ap(4)A/Ap(3)A under normal conditions (additional Zn(2+)/L-lysine/Mg(2+)). By contrast, wild-type LysU has a weaker glycerol kinase-like capability in the absence of Zn(2+) and is dominated by Ap(4)A/Ap(3)A synthesis in its presence. Kinetic and isothermal titration calorimetry results suggest that E264 is a crucial residue for Zn(2+) promotion of Ap(4)A/Ap(3)A synthesis. This is consistent with the hypothesis that E264 provides an anchor point for a Zn(2+) ion complexed to the active site, with simultaneous coordination to the enzyme bound lysyl-adenylate intermediate and secondary substrate ATP/ADP. The glycerol kinase-like activity is uncovered on disruption of this specific coordination.
Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Lisina-tRNA Ligase/química , Trifosfato de Adenosina/química , Substituição de Aminoácidos , Domínio Catalítico , Proteínas de Escherichia coli/genética , Glicerol Quinase/química , Ligação de Hidrogênio , Hidrólise , Cinética , Lisina-tRNA Ligase/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Zinco/químicaRESUMO
Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 µM and 20 µM can completely inhibit hTopoIIα activity while at 10 µM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay.