Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 108(6-2): 065207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243483

RESUMO

Kappa-distributed velocities in plasmas are common in a wide variety of settings, from low-density to high-density plasmas. To date, they have been found mainly in space plasmas, but are recently being considered also in the modeling of laboratory plasmas. Despite being routinely employed, the origin of the kappa distribution remains, to this day, unclear. For instance, deviations from the Maxwell-Boltzmann distribution are sometimes regarded as a signature of the nonadditivity of the thermodynamic entropy, although there are alternative frameworks such as superstatistics where such an assumption is not needed. In this work we recover the kappa distribution for particle velocities from the formalism of nonequilibrium steady-states, assuming only a single requirement on the dependence between the kinetic energy of a test particle and that of its immediate environment. Our results go beyond the standard derivation based on superstatistics, as we do not require any assumption about the existence of temperature or its statistical distribution, instead obtaining them from the requirement on kinetic energies. All of this suggests that this family of distributions may be more common than usually assumed, widening its domain of application in particular to the description of plasmas from fusion experiments. Furthermore, we show that a description of kappa-distributed plasma is simpler in terms of features of the superstatistical inverse temperature distribution rather than the traditional parameters κ and the thermal velocity v_{th}.

2.
Phys Rev E ; 102(4-1): 042137, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212729

RESUMO

The thermodynamic properties of systems with long-range interactions present an ongoing challenge, from the point of view of both theory as well as computer simulation. In this paper we study a model system, a Coulomb gas confined inside a sphere, by using the Wang-Landau algorithm. We have computed the configurational density of states, the thermodynamic entropy, and the caloric curve, and compared with microcanonical Metropolis simulations, while showing how concepts such as the configurational inverse temperature can be used to understand some aspects of thermodynamic behavior. A dynamical multistability behavior is seen at low energies in microcanonical Monte Carlo simulations, suggesting that flat-histogram methods can in fact be useful and complementary alternatives to traditional Metropolis simulation in complex systems.

3.
Phys Rev E ; 100(2-1): 023205, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574725

RESUMO

The correct modeling of velocity distribution functions for particles in steady-state plasmas is a central element in the study of nuclear fusion and also in the description of space plasmas. In this paper, a statistical mechanical formalism for the description of collisionless plasmas in a steady state is presented, based solely on the application of the rules of probability and not relying on the concept of entropy. Beck and Cohen's superstatistical framework [Beck and Cohen, Physica A 322, 267 (2003)PHYADX0378-437110.1016/S0378-4371(03)00019-0] is recovered as a limiting case, and a "microscopic" definition of inverse temperature ß is given. Nonextensivity is not invoked a priori but enters the picture only through the analysis of correlations between parts of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA